上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (9): 1432-1442.doi: 10.16183/j.cnki.jsjtu.2023.035
收稿日期:
2023-02-06
修回日期:
2023-07-08
接受日期:
2023-07-11
出版日期:
2024-09-28
发布日期:
2024-10-11
通讯作者:
张寿明,教授; E-mail:1740229323@qq.com.
E-mail:1740229323@qq.com
作者简介:
杨 森(1998—),硕士生,从事微电网优化运行与进化计算研究.
YANG Sen, GUO Ning, ZHANG Shouming()
Received:
2023-02-06
Revised:
2023-07-08
Accepted:
2023-07-11
Online:
2024-09-28
Published:
2024-10-11
摘要:
农业微电网以低成本的方式为偏远农村地区的能源供应提供了一种有前景的解决方案.综合考虑风光抽水蓄能一体化农业微电网满足用电负荷和用水负荷需求,在可再生能源出力及用电负荷需求的不确定性条件下,提出包含抽水蓄能(PHS)电站的孤岛型农业微电网和灌溉系统相结合的鲁棒优化调度模型,利用农村地区水资源富足的特点和风光抽蓄补偿的优势,在最小化系统总成本的同时提高可再生能源的消纳.所提模型考虑分布式发电、用电负荷和用水负荷需求、涡轮流量和灌溉流量,具有多样性、多约束、非连续的特点.提出一种引力鲸鱼优化算法(GWOA)求解该模型,在某农业微电网上的仿真结果表明,GWOA可以获得比CPLEX求解器及其他新开发算法更具竞争力的解.另外,探究了降水量不确定性引起灌溉系统用水负荷需求变化对系统运行成本的影响以及使用PHS电站的必要性.
中图分类号:
杨森, 郭宁, 张寿明. 不确定性条件下农业微电网与灌溉系统相结合的鲁棒优化调度[J]. 上海交通大学学报, 2024, 58(9): 1432-1442.
YANG Sen, GUO Ning, ZHANG Shouming. Robust Optimal Scheduling of Agricultural Microgrid Combined with Irrigation System Under Uncertainty Conditions[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1432-1442.
表5
2种场景下微电网运行成本
场景 | 算法 | 弃风弃 光率/% | 弃风弃光 率均值/% | 最优 成本/元 | 最优成本 均值/元 |
---|---|---|---|---|---|
含PHS | WOA | 8.75 | 7.78 | 2272.9 | 2212.9 |
PSO | 8.58 | 7.78 | 2254.5 | 2212.9 | |
ABC | 8.16 | 7.78 | 2228.3 | 2212.9 | |
EWOA | 7.24 | 7.78 | 2188.5 | 2212.9 | |
IWOA | 7.15 | 7.78 | 2196.6 | 2212.9 | |
GWOA | 6.85 | 7.78 | 2136.6 | 2212.9 | |
不含PHS | WOA | 18.34 | 18.18 | 3564.9 | 3539.7 |
PSO | 20.56 | 18.18 | 3571.0 | 3539.7 | |
ABC | 17.98 | 18.18 | 3546.9 | 3539.7 | |
EWOA | 17.52 | 18.18 | 3528.4 | 3539.7 | |
IWOA | 17.41 | 18.18 | 3521.0 | 3539.7 | |
GWOA | 17.26 | 18.18 | 3506.2 | 3539.7 |
[1] | ISHRAQUE M F, SHEZAN S A, ALI M M, et al. Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources[J]. Applied Energy, 2021, 292: 116879. |
[2] |
陆秋瑜, 于珍, 杨银国, 等. 考虑源荷功率不确定性的海上风力发电多微网两阶段优化调度[J]. 上海交通大学学报, 2022, 56(10): 1308-1316.
doi: 10.16183/j.cnki.jsjtu.2021.409 |
LU Qiuyu, YU Zhen, YANG Yinguo, et al. Two-stage optimal scheduling of offshore wind power generation in multi-microgrid considering source-load power uncertainty[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1308-1316. | |
[3] | ZHANG M Y, CHEN J J, YANG Z J, et al. Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power[J]. Energy, 2021, 237: 121638. |
[4] | 张丹, 王杰. 国内微电网项目建设及发展趋势研究[J]. 电网技术, 2016, 40(2): 451-458. |
ZHANG Dan, WANG Jie. Research on construction and development trend of micro-grid in China[J]. Power System Technology, 2016, 40(2): 451-458. | |
[5] |
潘险险, 陈霆威, 许志恒, 等. 适应多场景的微电网一体化柔性规划方法[J]. 上海交通大学学报, 2022, 56(12): 1598-1607.
doi: 10.16183/j.cnki.jsjtu.2021.402 |
PAN Xianxian, CHEN Tingwei, XU Zhiheng, et al. Flexible planning method for microgrid integration adapting to multiple scenarios[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1598-1607. | |
[6] | NNAJI E C, ADGIDZI D, DIOHA M O, et al. Modelling and management of smart microgrid for rural electrification in sub-saharan Africa: The case of Nigeria[J]. The Electricity Journal, 2019, 32(10): 106672. |
[7] | KAMAL M M, ASHRAF I, FERNANDEZ E. Optimal sizing of standalone rural microgrid for sustainable electrification with renewable energy resources[J]. Sustainable Cities & Society, 2023, 88: 104298. |
[8] | YUAN H Z, YE H H, CHEN Y T, et al. Research on the optimal configuration of photovoltaic and energy storage in rural microgrid[J]. Energy Reports, 2022, 8: 1285-1293. |
[9] | KAMAL M M, ASHRAF I, FERNANDEZ E. Planning and optimization of microgrid for rural electrification with integration of renewable energy resources[J]. Journal of Energy Storage, 2022, 52: 104782. |
[10] | JAVED M S, MA T, JURASZ J, et al. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives[J]. Renewable Energy, 2020, 148: 176-192. |
[11] | WANG X X, VIRGUEZ E, XIAO W H, et al. Clustering and dispatching hydro, wind, and photovoltaic power resources with multiobjective optimization of power generation fluctuations: A case study in southwestern China[J]. Energy, 2019, 189: 116250. |
[12] | SHYAM B, KANAKASABAPATHY P. Feasibility of floating solar PV integrated pumped storage system for a grid-connected microgrid under static time of day tariff environment: A case study from India[J]. Renewable Energy, 2022, 192: 200-215. |
[13] | GHASEMI A, ENAYATZARE M. Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response[J]. Renewable Energy, 2018, 123: 460-474. |
[14] | 荆朝霞, 胡荣兴, 袁灼新, 等. 含风/光/抽水蓄能并计及负荷响应的海岛微网优化配置[J]. 电力系统自动化, 2017, 41(1): 65-72. |
JING Zhaoxia, HU Rongxing, YUAN Zhuoxin, et al. Capacity configuration optimization for island microgrid with wind/solar/pumped storage considering demand response[J]. Automation of Electric Power Systems, 2017, 41(1): 65-72. | |
[15] | KHODAYAR M E. Rural electrification and expansion planning of off-grid microgrids[J]. The Electricity Journal, 2017, 30(4): 68-74. |
[16] | CHAOUACHI A, KAMEL R M, ANDOULSI R, et al. Multiobjective intelligent energy management for a microgrid[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1688-1699. |
[17] | CARDOSO G, STADLER M, SIDDIQUI A, et al. Microgrid reliability modeling and battery scheduling using stochastic linear programming[J]. Electric Power Systems Research, 2013, 103: 61-69. |
[18] | HONG M G, YU X Y, YU N P, et al. An energy scheduling algorithm supporting power quality management in commercial building microgrids[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 1044-1056. |
[19] | HOSSAIN M A, POTA H R, SQUARTINI S, et al. Modified PSO algorithm for real-time energy management in grid-connected microgrids[J]. Renewable Energy, 2019, 136: 746-757. |
[20] | LEONORI S, PASCHERO M, FRATTALE MASCIOLI F M, et al. Optimization strategies for microgrid energy management systems by genetic algorithms[J]. Applied Soft Computing, 2020, 86: 105903. |
[21] | SAEED M H, WANG F Z, SALEM S, et al. Two-stage intelligent planning with improved artificial bee colony algorithm for a microgrid by considering the uncertainty of renewable sources[J]. Energy Reports, 2021, 7: 8912-8928. |
[22] | ZHAO X G, ZHANG Z Q, XIE Y M, et al. Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization[J]. Energy, 2020, 195: 117014. |
[23] | TORKAN R, ILINCA A, GHORBANZADEH M. A genetic algorithm optimization approach for smart energy management of microgrids[J]. Renewable Energy, 2022, 197: 852-863. |
[24] | NGUYEN T T, NGO T G, DAO T K, et al. Microgrid operations planning based on improving the flying sparrow search algorithm[J]. Symmetry, 2022, 14(1): 168. |
[25] | LI B, DENG H S, WANG J E. Optimal scheduling of microgrid considering the interruptible load shifting based on improved biogeography-based optimization algorithm[J]. Symmetry, 2021, 13(9): 1707. |
[26] | CHEN W M, SHAO Z H, WAKIL K, et al. An efficient day-ahead cost-based generation scheduling of a multi-supply microgrid using a modified krill herd algorithm[J]. Journal of Cleaner Production, 2020, 272: 122364. |
[27] | YANG Q D, DONG N, ZHANG J. An enhanced adaptive bat algorithm for microgrid energy scheduling[J]. Energy, 2021, 232: 121014. |
[28] | SUMAN G K, GUERRERO J M, ROY O P. Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach[J]. Sustainable Cities & Society, 2021, 67: 102723. |
[29] | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
[30] | XIAN H F, CHE J X. Unified whale optimization algorithm based multi-kernel SVR ensemble learning for wind speed forecasting[J]. Applied Soft Computing, 2022, 130: 109690. |
[31] | YAN Z P, ZHANG J Z, ZENG J, et al. Three-dimensional path planning for autonomous underwater vehicles based on a whale optimization algorithm[J]. Ocean Engineering, 2022, 250: 111070. |
[32] | KAUR B, RATHI S, AGRAWAL R K. Enhanced depression detection from speech using quantum whale optimization algorithm for feature selection[J]. Computers in Biology & Medicine, 2022, 150: 106122. |
[33] | RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: A gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248. |
[34] | 吴定会, 高聪, 纪志成. 混合粒子群算法在微电网经济优化运行的应用[J]. 控制理论与应用, 2018, 35(4): 457-467. |
WU Dinghui, GAO Cong, JI Zhicheng. Economic optimization operation of the microgrid using the hybrid particle swarm optimization algorithm[J]. Control Theory & Applications, 2018, 35(4): 457-467. | |
[35] | GHASEMI A. Coordination of pumped-storage unit and irrigation system with intermittent wind generation for intelligent energy management of an agricultural microgrid[J]. Energy, 2018, 142: 1-13. |
[36] | QAIS M H, HASANIEN H M, ALGHUWAINEM S. Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators[J]. Applied Soft Computing, 2020, 86: 105937. |
[37] | LIU Y X, YANG S W, LI D J, et al. Improved whale optimization algorithm for solving microgrid operations planning problems[J]. Symmetry, 2022, 15(1): 36. |
[1] | 刘飞, 车琰瑛, 田旭, 许德操, 周慧洁, 李知艺. 新型电力系统下的抽水蓄能电站成本疏导机制:综述与展望[J]. 上海交通大学学报, 2023, 57(7): 757-768. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||