上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (6): 941-953.doi: 10.16183/j.cnki.jsjtu.2022.516
收稿日期:
2022-12-12
修回日期:
2023-02-23
接受日期:
2023-03-09
出版日期:
2024-06-28
发布日期:
2024-07-05
通讯作者:
廖思阳,副教授,博士生导师;E-mail: 作者简介:
徐箭(1980-),教授,从事新型电力系统运行与控制研究.
基金资助:
XU Jian, YU Qingfang, LIAO Siyang(), KE Deping, SUN Yuanzhang
Received:
2022-12-12
Revised:
2023-02-23
Accepted:
2023-03-09
Online:
2024-06-28
Published:
2024-07-05
摘要:
高比例新能源接入工业园区已成为高耗能工业负荷低碳转型的主要途径,而联络线功率剧烈频繁波动是园区低碳转型的关键问题.因此,提出一种考虑生产安全的工业园区联络线功率平滑策略.首先,分析电解铝和矿热炉的可控设备控制模型,构建基于联络线功率波动反馈的工业负荷功率闭环反馈控制模型.考虑工业生产核心影响因素,构建温度状态指标模型,形成考虑工业生产核心因素的典型工业负荷需求侧响应惩罚成本模型,并以工业生产的惩罚成本最小为优化目标,将控制目标分配至各工业负荷.最后,构建基于云南电网文山区域网架的MATLAB在线计算和RTDS仿真实时交互算例,结果表明,该算法自适应更新生产设备温度,有效降低功率调节对生产的影响,且联络线购电成本可降低36.4%.
中图分类号:
徐箭, 余青芳, 廖思阳, 柯德平, 孙元章. 考虑生产安全的工业园区联络线功率平滑策略[J]. 上海交通大学学报, 2024, 58(6): 941-953.
XU Jian, YU Qingfang, LIAO Siyang, KE Deping, SUN Yuanzhang. Power Smoothing Strategy for Industrial Park Tie-Line Considering Production Safety[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 941-953.
[1] | 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(Sup.1): 28-51. |
HUANG Yuhan, DING Tao, LI Yuting, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(Sup.1): 28-51. | |
[2] | 陈吕军. 做好碳达峰碳中和工作, 工业园区必须做出贡献[J]. 资源再生, 2021 (2): 15-20. |
CHEN Lüjun. To do a good job of carbon peak and carbon neutrality, industrial parks must make contributions[J]. Resource Recycling, 2021 (2): 15-20. | |
[3] | 王强, 崔勇, 张小未. “双碳”战略下工业园区能源互联网系统架构设计[J]. 电工技术, 2022(14): 180-183. |
WANG Qiang, CUI Yong, ZHANG Xiaowei. System architecture design of energy internet in industrial parks under the “carbon peaking and carbon neutrality” strategy[J]. Electric Engineering, 2022(14): 180-183. | |
[4] | LIU Y, LI B, DENG Y. Real-time control strategy of hybrid energy storage to smooth out fluctuations in PV industrial parks[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). Taiyuan, China: IEEE, 2021: 1668-1673. |
[5] | JIANG C, LIN H, WEN E, et al. A demand side response strategy for large industrial customers considering the uncertainty of renewable energy generation[C]//2020 International Conference on Smart Grids and Energy Systems. Perth, Australia: IEEE, 2020: 285-290. |
[6] | 张亮, 李章溢, 裴玮, 等. 基于综合需求响应的工业园区联络线功率控制[J]. 电力工程技术, 2021, 40(3): 106-113. |
ZHANG Liang, LI Zhangyi, PEI Wei, et al. Tie-line power control method for an industrial park based on integrated demand response[J]. Electric Power Engineering Technology, 2021, 40(3): 106-113. | |
[7] | HEMMATI R, SABOORI H. Emergence of hybrid energy storage systems in renewable energy and transport applications — A review[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 11-23. |
[8] | AGUERO JL, BEROQUI M, ACHILLES S. Aluminum plant, load modeling for stability studies[C]//Power Engineering and Energy Society Summer Meeting. Edmonton, AB, Canada: IEEE, 1999: 1-6. |
[9] | DUGAN R C. Simulation of arc furnace power systems[J]. IEEE Transactions on Industry Applications, 1980, IA-16(6): 813-818. |
[10] | PAULUS M, BORGGREFE F. The potential of demand-side management in energy-intensive industries for electricity markets in Germany[J]. Applied Energy, 2011, 88(2): 432-441. |
[11] | 王萧博, 黄文焘, 邰能灵, 等. 一种源-荷-储协同的电热微网联络线功率平滑策略[J]. 电工技术学报, 2020, 35(13): 2817-2829. |
WANG Xiaobo, HUANG Wentao, TAI Nengling, et al. A tie-line power smoothing strategy for microgrid with heat and power system using source-load-storage coordination control[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2817-2829. | |
[12] | AVRADAN S, MAKRAM E B, GIRGIS A A. A new time domain voltage source model for an arc furnace using EMTP[J]. IEEE Transactions on Power Delivery, 1996, 11(3): 1685-1691. |
[13] | LIAO S, XU J, SUN Y, et al. Control of energy-intensive load for power smoothing in wind power plants[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6142-6154. |
[14] | JIANG H, LIN J, SONG Y, et al. MPC-based frequency control with demand-side participation: A case study in an isolated wind-aluminum power system[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3327-3337. |
[15] | XU J, CHEN Y, LIAO S, et al. Demand side industrial load control for local utilization of wind power in isolated grids[J]. Applied Energy, 2019, 243: 47-56. |
[16] | 蒋雪怡, 徐箭, 廖思阳, 等. 考虑工业用户响应意愿差异性的工业园区多类型负荷协同平抑风电功率波动控制方法[J]. 武汉大学学报(工学版), 2022, 55(9): 876-885. |
JIANG Xueyi, XU Jian, LIAO Siyang, et al. Coordinated control scheme of multi-type loads for wind power fluctuation in industrial parks considering the difference in response willingness of industrial users[J]. Engineering Journal of Wuhan University, 2022, 55(9): 876-885. | |
[17] | 姚垚, 张沛超. 基于市场控制的空调负荷参与平抑微网联络线功率波动的方法[J]. 中国电机工程学报, 2018, 38(3): 782-791. |
YAO Yao, ZHANG Peichao. A market-based control method for air conditioner loads to smooth microgrid tie-line power fluctuation[J]. Proceedings of the CSEE, 2018, 38(3): 782-791. | |
[18] |
张尔佳, 邰能灵, 陈旸, 等. 基于虚拟储能的综合能源系统分布式电源功率波动平抑策略[J]. 发电技术, 2020, 41(1): 30-40.
doi: 10.12096/j.2096-4528.pgt.19144 |
ZHANG Erjia, TAI Nengling, CHEN Yang, et al. A coordination strategy to smooth power fluctuation of distributed generation in integrated energy system based on virtual energy storage[J]. Power Generation Technology, 2020, 41(1): 30-40.
doi: 10.12096/j.2096-4528.pgt.19144 |
|
[19] | 肖浩, 裴玮, 孔力. 基于模型预测控制的微电网多时间尺度协调优化调度[J]. 电力系统自动化, 2016, 40(18): 7-14. |
XIAO Hao, PEI Wei, KONG Li. Multi-time scale coordinated optimal dispatch of microgrid based on model predictive control[J]. Automation of Electric Power Systems, 2016, 40(18): 7-14. | |
[20] | 马昕, 裴玮, 肖浩, 等. 考虑复杂生产约束的电池生产工业园区能源网络与生产管理综合优化运行[J]. 电网技术, 2018, 42(11): 3566-3575. |
MA Xin, PEI Wei, XIAO Hao, et al. Integrated energy network and production management optimization operation of battery production industrial estate considering complex production constraints[J]. Power System Technology, 2018, 42(11): 3566-3575. | |
[21] | JIANG H, LIN J, SONG Y, et al. Demand side frequency control scheme in an isolated wind power system for industrial aluminum smelting production[J]. IEEE Transactions on Power Systems, 2014, 29(2): 844-853. |
[22] | 杨铭, 许和平, 许其品, 等. 自饱和电抗器在大功率电解铝整流中的控制特性分析[J]. 变压器, 2014, 51(7): 6-11. |
YANG Ming, XU Heping, XU Qipin, et al. Control characteristics analysis of self-saturated reactor in lager-power rectifying device for aluminum electrolysis[J]. Transformer, 2014, 51(7): 6-11. | |
[23] | 涂夏哲. 基于矿热炉负荷调节的钢铁工业局域网频率控制研究[D]. 武汉: 武汉大学, 2018. |
TU Xiazhe. Research on frequency control in local grid of iron and steel industry based on load regulation of arc furnace[D]. Wuhan: Wuhan University, 2018. | |
[24] | 饶无疾. 矿热炉电极升降自动控制系统的设计与仿真研究[D]. 北京: 华北电力大学, 2016. |
RAO Wuji. The design and simulation of the automatic control system for Submerged arc furnace electrode lifting[D]. Beijing: North China Electric Power University, 2016. | |
[25] | 李春焕, 曹阿林. 400 kA系列铝电解槽能量平衡分析[J]. 有色金属(冶炼部分), 2017 (4): 30-34. |
LI Chunhuan, CAO Alin. Analysis on energy equilibrium of 400 kA aluminum electrolysis cells[J]. Nonferrous Metals (Extractive Metallurgy), 2017 (4): 30-34. | |
[26] | 廖承驹. 断电对电弧炉冶炼过程的影响及其电能损耗的计算[J]. 电炉, 1984(3): 18-22. |
LIAO Chengju. The influence of power off on electric arc furnace smelting process and the calculation of electric energy loss[J]. Industrial Heating, 1984(3): 18-22. |
[1] | 叶鹏, 刘思奇, 关多娇, 姜竹楠, 孙峰, 顾海飞. 基于自适应均衡技术的分布式储能聚合模型及评估方法[J]. 上海交通大学学报, 2021, 55(12): 1689-1699. |
[2] | 徐寒, 朱三立, 张腾飞, 陈舒, 刘明祥. 低压配电系统剩余电流保护与重合闸逻辑组合优化方法(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
[3] | 王若琪1, 胡炎1, 杨增力2, 王晶2, 吴迪2, 张振2. 大量分布式电源接入的配电网自适应重合闸及故障恢复策略(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||