上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (3): 382-390.doi: 10.16183/j.cnki.jsjtu.2022.254
收稿日期:
2022-07-01
修回日期:
2022-07-22
接受日期:
2022-07-27
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
敖三三,副教授;E-mail:作者简介:
左新德(1996-),硕士生,从事NiTi合金电弧增材制造工艺及其组织性能研究.
基金资助:
ZUO Xinde, CHEN Yi, LI Yang, LUO Zhen, AO Sansan()
Received:
2022-07-01
Revised:
2022-07-22
Accepted:
2022-07-27
Online:
2024-03-28
Published:
2024-03-28
摘要:
NiTiTa三元形状记忆合金(SMAs)是潜在的生物医用材料,且电弧增材制造(WAAM)技术已经广泛应用于NiTi合金的研究中,研究Ta添加对WAAM的NiTi合金组织性能的影响具有重要意义.利用WAAM技术分别制造了5层NiTi合金和NiTiTa合金薄壁构件,系统研究了Ta添加对NiTi合金的微观组织、相变行为、力学性能以及抗腐蚀能力的影响.结果表明,与NiTi合金相比, NiTiTa合金的晶粒显著细化,析出相由NiTi合金中的Ni3Ti转变为 Ni(Ti, Ta)2.此外,其相变温度显著提高,导致了室温下的组织由完全奥氏体相(B2)转变为奥氏体(B2)和马氏体(B19’)的混合相.拉伸试验结果表明,NiTiTa合金试样相较于NiTi合金试样的抗拉强度提升了9.5%,但延伸率下降了6.8%.极化曲线结果表明,NiTiTa合金具有更高的自腐蚀电位和更小的腐蚀电流密度,抗腐蚀能力显著提升.本研究为促进WAAM制备的NiTiTa合金及其在生物医疗领域的应用奠定了研究基础.
中图分类号:
左新德, 陈懿, 李洋, 罗震, 敖三三. 添加钽对电弧熔丝增材制备镍钛形状记忆合金组织性能的影响[J]. 上海交通大学学报, 2024, 58(3): 382-390.
ZUO Xinde, CHEN Yi, LI Yang, LUO Zhen, AO Sansan. Effect of Adding Tantalum on Microstructure and Properties of NiTi Shape Memory Alloy Manufactured by Wire Arc Additive Manufacturing[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 382-390.
[1] |
朱雪洁, 钟诗江, 杨晓霞, 等. NiTi基形状记忆合金弹热效应及其应用研究进展[J]. 材料工程, 2021, 49(3): 1-13.
doi: 10.11868/j.issn.1001-4381.2020.000780 |
ZHU Xuejie, ZHONG Shijiang, YANG Xiaoxia, et al. Research progress in elastocaloric effect and its application of NiTi-based shape memory alloys[J]. Journal of Materials Engineering, 2021, 49(3): 1-13.
doi: 10.11868/j.issn.1001-4381.2020.000780 |
|
[2] |
LOHAN N M, PRICOP B, POPA M, et al. Hot rolling effects on the microstructure and chemical properties of NiTiTa alloys[J]. Journal of Materials Engineering and Performance, 2019, 28(12): 7273-7280.
doi: 10.1007/s11665-019-04473-6 |
[3] | WADOOD A. Brief overview on nitinol as biomaterial[J]. Advances in Materials Science and Engineering, 2016, 2016: 4173138. |
[4] |
ZAMBELLI B, UVERSKY V N, CIURLI S. Nickel impact on human health: An intrinsic disorder perspective[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2016, 1864(12): 1714-1731.
doi: 10.1016/j.bbapap.2016.09.008 URL |
[5] |
CAI S, MITCHELL S G, WANG L, et al. Effect of Ta on microstructures and mechanical properties of NiTi alloys[J]. Shape Memory and Superelasticity, 2019, 5(3): 249-257.
doi: 10.1007/s40830-019-00228-3 |
[6] |
GONG C W, GUO F F, TIAN Y M, et al. Microstructure observation of Ni50Ti45Ta5 shape memory alloy[J]. Advanced Materials Research, 2011, 391/392: 452-456.
doi: 10.4028/www.scientific.net/AMR.391-392 URL |
[7] |
ZHOU Y, LI M, CHENG Y, et al. Tantalum coated NiTi alloy by PIIID for biomedical application[J]. Surface and Coatings Technology, 2013, 228: S2-S6.
doi: 10.1016/j.surfcoat.2012.11.002 URL |
[8] |
RAUT L P, TAIWADE R V. Wire arc additive manufacturing: A comprehensive review and research directions[J]. Journal of Materials Engineering and Performance, 2021, 30(7): 4768-4791.
doi: 10.1007/s11665-021-05871-5 |
[9] |
葛福国, 彭倍, 柯文超, 等. 电弧增材制造NiTi形状记忆合金成形与性能[J]. 机械工程学报, 2020, 56(8): 99-106.
doi: 10.3901/JME.2020.08.099 |
GE Fuguo, PENG Bei, KE Wenchao, et al. Forming properties of wire arc additive manufactured NiTi shape memory alloy[J]. Journal of Mechanical Engineering, 2020, 56(8): 99-106.
doi: 10.3901/JME.2020.08.099 |
|
[10] |
RESNINA N, PALANI I A, BELYAEV S, et al. Structure, martensitic transformations and mechanical behaviour of NiTi shape memory alloy produced by wire arc additive manufacturing[J]. Journal of Alloys and Compounds, 2021, 851: 156851.
doi: 10.1016/j.jallcom.2020.156851 URL |
[11] |
ZENG Z, CONG B Q, OLIVEIRA J P, et al. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties[J]. Additive Manufacturing, 2020, 32: 101051.
doi: 10.1016/j.addma.2020.101051 URL |
[12] |
YU L, CHEN K Y, ZHANG Y L, et al. Microstructures and mechanical properties of NiTi shape memory alloys fabricated by wire arc additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 892: 162193.
doi: 10.1016/j.jallcom.2021.162193 URL |
[13] |
LIN Z D, SONG K J, YU X H. A review on wire and arc additive manufacturing of titanium alloy[J]. Journal of Manufacturing Processes, 2021, 70: 24-45.
doi: 10.1016/j.jmapro.2021.08.018 URL |
[14] |
王磊磊, 张占辉, 徐得伟, 等. 双脉冲电弧增材制造数值模拟与晶粒细化机理[J]. 焊接学报, 2019, 40(4): 137-140.
doi: 10.12073/j.hjxb.2019400114 |
WANG Leilei, ZHANG Zhanhui, XU Dewei, et al. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137-140.
doi: 10.12073/j.hjxb.2019400114 |
|
[15] |
MA J L, WU K H, PU Z. Microstructure and transformation behavior of Ni50Ti50-xTax alloys[J]. Materials Science Forum, 2000, 327/328: 179-182.
doi: 10.4028/www.scientific.net/MSF URL |
[16] |
GAO S, HOU J S, YANG F, et al. Effects of tantalum on microstructure and mechanical properties of cast IN617 alloy[J]. Materials Science and Engineering: A, 2017, 706: 153-160.
doi: 10.1016/j.msea.2017.09.014 URL |
[17] |
NISHIDA M, WAYMAN C M, HONMA T. Precipitation processes in near-equiatomic TiNi shape memory alloys[J]. Metallurgical Transactions A, 1986, 17(9): 1505-1515.
doi: 10.1007/BF02650086 URL |
[18] |
ZHANG J X, SATO M, ISHIDA A. On the Ti2Ni precipitates and Guinier-Preston zones in Ti-rich TiNi thin films[J]. Acta Materialia, 2003, 51(11): 3121-3130.
doi: 10.1016/S1359-6454(03)00124-1 URL |
[19] |
LU B W, CUI X F, MA W Y, et al. Promoting the heterogeneous nucleation and the functional properties of directed energy deposited NiTi alloy by addition of La2O3[J]. Additive Manufacturing, 2020, 33: 101150.
doi: 10.1016/j.addma.2020.101150 URL |
[20] | ZENG Z, OLIVEIRA J P, YANG M, et al. Functional fatigue behavior of NiTi-Cu dissimilar laser welds[J]. Materials & Design, 2017, 114: 282-287. |
[21] |
MOSCA H O, BOZZOLO G, DEL GROSSO M F. Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni-Ti-Pd, Ni-Ti-Pt and Ni-Ti-Hf shape memory alloys[J]. Physica B: Condensed Matter, 2012, 407(16): 3244-3247.
doi: 10.1016/j.physb.2011.12.077 URL |
[22] |
ZARINEJAD M, LIU Y. Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons[J]. Advanced Functional Materials, 2008, 18(18): 2789-2794.
doi: 10.1002/adfm.v18:18 URL |
[23] |
CAI S, SCHAFFER J E, REN Y. Effect of Ni/Ti ratio and Ta content on NiTiTa alloys[J]. Shape Memory and Superelasticity, 2021, 7(4): 491-502.
doi: 10.1007/s40830-021-00350-1 |
[24] |
FIGUEIRA N, SILVA T M, CARMEZIM M J, et al. Corrosion behaviour of NiTi alloy[J]. Electrochimica Acta, 2009, 54(3): 921-926.
doi: 10.1016/j.electacta.2008.08.001 URL |
[25] |
DONG B H, WU F, ALAJMI Z, et al. Sol-gel derived Ta-containing TiO2 films on surface roughened NiTi alloy[J]. Rare Metals, 2014, 33(1): 21-27.
doi: 10.1007/s12598-013-0208-9 URL |
[1] | 鲍海生, 刘龙权. 石墨烯增强空心微点阵材料的制备与表征[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 192-196. |
[2] | 王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358. |
[3] | 张威,敖三三,罗震,郝志壮,陈瑶,冯梦楠,解龑. 焊接能量对铝镍超声波焊接接头性能的影响[J]. 上海交通大学学报, 2019, 53(9): 1130-1135. |
[4] | 朱强,秦飞,王武荣,韦习成. 不同搭接顺序下三层板电阻点焊接头力学性能[J]. 上海交通大学学报, 2019, 53(9): 1122-1129. |
[5] | 何冠中,楼铭,马运五,李永兵. 铝钢电阻单元焊接头力学性能模拟[J]. 上海交通大学学报, 2019, 53(5): 616-623. |
[6] | 祁睿格,何春霞,付菁菁,赵丽梅,姜彩昀. 无机纳米粒子对木粉/高密度聚乙烯木塑复合材料热学及力学性能的影响[J]. 上海交通大学学报(自然版), 2019, 53(3): 373-379. |
[7] | 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能[J]. 上海交通大学学报, 2019, 53(11): 1381-1388. |
[8] | 杜思琦,王继崇,彭雄奇,顾海麟. 可生物降解的黄麻纤维/聚乳酸复合材料的制备和力学性能[J]. 上海交通大学学报, 2019, 53(11): 1335-1341. |
[9] | 俞建超,林有希. 高速加工中无氧铜的动态力学性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 587-592. |
[10] | 陈建稳1,周涵1,陈务军2,赵兵2,王明洋3. 飞艇用层压织物膜材料在双向应力作用下的弹性参数分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 344-. |
[11] | 金雪,朱平,李晗,王庆. 防松帽搭接焊缝力学性能及分区建模方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1297-1303. |
[12] | 赵君1,余海东2. 基于绝对节点坐标法的柔性双臂机构动力学分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1160-1165. |
[13] | 陈玉喜1,刘亮2,张华军2,陈华斌1,陈善本1. 焊接热输入对低合金高强钢焊缝组织和韧性的影响[J]. 上海交通大学学报(自然版), 2015, 49(03): 306-309. |
[14] | 朱加雷1,王殿舒2,焦向东1,陈茂骁1. 气室式局部干法水下焊接[J]. 上海交通大学学报(自然版), 2015, 49(03): 329-332. |
[15] | 郑钰,李宏烨,庄新村,赵震. 金属板料剪切试验方法及应用的研究现状[J]. 上海交通大学学报(自然版), 2014, 48(03): 422-426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||