上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (3): 263-272.doi: 10.16183/j.cnki.jsjtu.2022.306
屈克庆1, 董浩1, 毛玲1(), 赵晋斌1, 杨建林2, 李芬1
收稿日期:
2022-08-04
修回日期:
2022-09-14
接受日期:
2022-09-22
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
毛 玲,讲师;E-mail: 作者简介:
屈克庆(1970-),副教授,从事电力电子PWM变换技术、软开关技术、电力电子在新能源发电和电力系统中应用研究.
基金资助:
QU Keqing1, DONG Hao1, MAO Ling1(), ZHAO Jinbin1, YANG Jianlin2, LI Fen1
Received:
2022-08-04
Revised:
2022-09-14
Accepted:
2022-09-22
Online:
2024-03-28
Published:
2024-03-28
摘要:
锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方法.该方法通过 dQ/dV 和dT/dV曲线分析,筛选出与电池SOH相关性较高的数据区间进行多维健康特征提取,并对其进行主成分分析降维处理得到间接健康因子;利用极限学习机的随机学习算法建立间接健康因子和SOH之间的非线性映射关系.在此基础上,针对单一模型输出不稳定的特点,提出一种集成极限学习机模型,通过对估计结果设置可信度评价规则剔除单一极限学习机不可靠的输出,从而提高锂离子电池SOH的估计精度.使用NASA和牛津大学的锂离子电池老化数据集对该方法进行验证,结果表明该方法的平均绝对百分比误差小于1%,具有较高的准确性和可靠性.
中图分类号:
屈克庆, 董浩, 毛玲, 赵晋斌, 杨建林, 李芬. 基于融合健康因子和集成极限学习机的锂离子电池SOH在线估计[J]. 上海交通大学学报, 2024, 58(3): 263-272.
QU Keqing, DONG Hao, MAO Ling, ZHAO Jinbin, YANG Jianlin, LI Fen. SOH Online Estimation of Lithium-Ion Batteries Based on Fusion Health Factor and Integrated Extreme Learning Machine[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 263-272.
表2
各电池SOH估计结果的误差指标
电池编号 | MAE | MAPE | RMSE |
---|---|---|---|
B0005 | 0.0059 | 0.0073 | 0.0075 |
B0006 | 0.0094 | 0.0125 | 0.0117 |
B0007 | 0.0058 | 0.0063 | 0.0073 |
B0018 | 0.0110 | 0.0130 | 0.0127 |
Cell 1 | 0.0024 | 0.0032 | 0.0033 |
Cell 2 | 0.0073 | 0.091 | 0.0089 |
Cell 3 | 0.0025 | 0.0029 | 0.0031 |
Cell 4 | 0.0032 | 0.0037 | 0.0035 |
Cell 5 | 0.0021 | 0.0023 | 0.0028 |
Cell 6 | 0.0038 | 0.0046 | 0.0043 |
Cell 7 | 0.0016 | 0.0019 | 0.0021 |
Cell 8 | 0.0021 | 0.0024 | 0.0027 |
[1] |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
doi: 10.1038/s41560-019-0356-8 |
[2] |
ZHANG X W, QIN Y, YUEN C, et al. Time-series regeneration with convolutional recurrent generative adversarial network for remaining useful life estimation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6820-6831.
doi: 10.1109/TII.2020.3046036 URL |
[3] |
卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
doi: 10.16183/j.cnki.jsjtu.2021.027 |
LU Dihua, CHEN Ziqiang. State of health estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. | |
[4] | 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. |
SUN Bingxiang, REN Pengbo, CHEN Yuzhe, et al. Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674. | |
[5] |
XIONG R, TIAN J P, MU H, et al. A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries[J]. Applied Energy, 2017, 207: 372-383.
doi: 10.1016/j.apenergy.2017.05.124 URL |
[6] |
GOU B, XU Y, FENG X. State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10854-10867.
doi: 10.1109/TVT.25 URL |
[7] |
CHEN L, LIN W L, LI J Z, et al. Prediction of lithium-ion battery capacity with metabolic grey model[J]. Energy, 2016, 106: 662-672.
doi: 10.1016/j.energy.2016.03.096 URL |
[8] |
SCHUSTER S F, BACH T, FLEDER E, et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions[J]. Journal of Energy Storage, 2015, 1: 44-53.
doi: 10.1016/j.est.2015.05.003 URL |
[9] |
WAAG W, KÄBITZ S, SAUER D U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy, 2013, 102: 885-897.
doi: 10.1016/j.apenergy.2012.09.030 URL |
[10] |
ZHANG C, ALLAFI W, DINH Q, et al. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy, 2018, 142: 678-688.
doi: 10.1016/j.energy.2017.10.043 URL |
[11] | 刘湘东, 刘承志, 杨梓杰, 等. 基于无迹卡尔曼滤波的全钒液流电池状态估计[J]. 中国电机工程学报, 2018, 38(6): 1769-1777. |
LIU Xiangdong, LIU Chengzhi, YANG Zijie, et al. State estimation of all-vanadium flow battery based on unscented Kalman filter[J]. Proceedings of the CSEE, 2018, 38(6): 1769-1777. | |
[12] | 孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1): 185-191. |
SUN Dong, CHEN Xikun. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191. | |
[13] |
LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806.
doi: 10.1016/j.energy.2018.10.131 URL |
[14] |
LIU W, XU Y, FENG X. A hierarchical and flexible data-driven method for online state-of-health estimation of Li-ion battery[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14739-14748.
doi: 10.1109/TVT.25 URL |
[15] |
徐宏东, 高海波, 徐晓滨, 等. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421.
doi: 10.16183/j.cnki.jsjtu.2021.345 |
XU Hongdong, GAO Haibo, XU Xiaobin, et al. State of health estimation of lithium-ion battery using a CS-SVR model based on evidence reasoning rule[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. | |
[16] |
LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254.
doi: 10.1016/j.rser.2019.109254 URL |
[17] |
SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: 100817.
doi: 10.1016/j.est.2019.100817 URL |
[18] | 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1533. |
WANG Ping, FAN Lingfeng, CHENG Ze. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1533. | |
[19] | 王萍, 张吉昂, 程泽. 基于最小二乘支持向量机误差补偿模型的锂离子电池健康状态估计方法[J]. 电网技术, 2022, 46(2): 613-621. |
WANG Ping, ZHANG Ji’ang, CHENG Ze. Estimation method of lithium-ion battery health state based on least square support vector machine error compensation model[J]. Power System Technology, 2022, 46(2): 613-621. | |
[20] | 樊亚翔, 肖飞, 许杰, 等. 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 41(16): 5661-5669. |
FAN Yaxiang, XIAO Fei, XU Jie, et al. SOH estimation of lithium-ion battery based on charging voltage segment and kernel ridge regression[J]. Proceedings of the CSEE, 2021, 41(16): 5661-5669. | |
[21] | 杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287. |
YANG Shengjie, LUO Bingyang, WANG Jing, et al. State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287. | |
[22] |
WANG Z P, YUAN C G, LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16-25.
doi: 10.1109/TTE.6687316 URL |
[23] | SAHA B, GOEBEL K. Battery data set: NASA Ames prognostics data repository[DB/OL]. (2021-12-13)[2022-08-04]. http://ti.arc.nasa.gov/project/prognostic-datarepository. |
[24] | BIRKL C. Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford, South East England, UK: University of Oxford, 2017. |
[25] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489-501.
doi: 10.1016/j.neucom.2005.12.126 URL |
[1] | 张孝远, 张金浩, 杨立新. 考虑不同充电策略的锂电池健康状态区间估计[J]. 上海交通大学学报, 2024, 58(3): 273-284. |
[2] | 徐宏东, 高海波, 徐晓滨, 林治国, 盛晨兴. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421. |
[3] | 卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352. |
[4] | 姜余, 陈自强. 可变环境温度下锂离子电池平均温度估计[J]. 上海交通大学学报, 2021, 55(7): 781-790. |
[5] | 刘健,陈自强,黄德扬,郑昌文,周诗尧,姜余. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065. |
[6] | 周诗尧, 陈自强, 郑昌文, 黄德扬, 刘健, 葛云龙. 全海深深潜器所用动力锂离子电池电气特性[J]. 上海交通大学学报, 2019, 53(1): 49-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||