上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (S1): 37-45.doi: 10.16183/j.cnki.jsjtu.2023.S1.27

• • 上一篇    下一篇

基于长短期记忆网络的大型漂浮式风力发电机平台运动极短期预报方法

卫慧1, 陈鹏2,3, 张芮菡2, 程正顺2,3()   

  1. 1.上海勘测设计研究院有限公司,上海 200335
    2.上海交通大学 海洋工程国家重点实验室, 上海 200240
    3.上海交通大学 三亚崖州湾深海科技研究院,海南 三亚 570025
  • 收稿日期:2023-07-02 修回日期:2023-07-23 接受日期:2023-08-21 出版日期:2023-10-28 发布日期:2023-11-10
  • 通讯作者: 程正顺 E-mail:zhengshun.cheng@sjtu.edu.cn.
  • 作者简介:卫 慧,高级工程师,从事海上风电数字化研究.
  • 基金资助:
    国家自然科学基金(42176210);国家自然科学基金(52201330)

Ultra-Short-Term Platform Motion Prediction Method of Large Floating Wind Turbines Based on LSTM Network

WEI Hui1, CHEN Peng2,3, ZHANG Ruihan2, CHENG Zhengshun2,3()   

  1. 1. Shanghai Investigation, Design and Research Institute Co., Ltd., Shanghai 200335, China
    2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    3. Sanya Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Sanya 570025, Hainan, China
  • Received:2023-07-02 Revised:2023-07-23 Accepted:2023-08-21 Online:2023-10-28 Published:2023-11-10
  • Contact: CHENG Zhengshun E-mail:zhengshun.cheng@sjtu.edu.cn.

摘要:

大型漂浮式风力发电机平台运动响应的超前预报是实现主动调载系统控制和智慧运维监测的关键技术.然而,漂浮式风力发电机复杂的工作环境使得仅依靠物理模型和数值仿真方法的极短期预报具有非常大的挑战.因此,提出一种创新的基于长短期记忆神经网络的漂浮式风力发电机平台运动极短期预报方法,并利用实测数据开展了浮式平台纵荡运动的验证与不确定性分析.结果表明,该极短期预报方法可以获得较好的精度,超前60 s预报工作状态下纵荡运动的均方误差最大仅约为1%.该大型漂浮式风力发电机极短期运动响应预报能够为未来漂浮式风电场的智慧运维提供扎实的技术支撑.

关键词: 大型漂浮式风力发电机, 极短期预报, 长短期记忆网络, 不确定性

Abstract:

The motion prediction of large floating wind turbine platforms is the key technology to realize the control of active ballast systems and intelligent operation and maintenance monitoring. However, the complex environment of floating wind turbines makes ultra-short-term predictions that only rely on physical models and numerical simulation methods very challenging. Therefore, this paper proposes an innovative ultra-short-term prediction method for floating wind turbine platform motion based on the long-short-term memory (LSTM) neural network. Measured data have been used to verify the feasibility and uncertainty of this method in terms of surge motion. The results show that the ultra-short-term prediction method proposed in this paper can obtain a better accuracy. For example, the maximum mean square error of surge motion prediction in the 60 s under working condition is only about 1%. The ultra-short-term motion prediction of large floating wind turbines proposed in this paper provides solid technical support for future intelligent operation and maintenance of floating wind farms.

Key words: large floating wind turbines, ultra-short-term prediction, long-short-term memory (LSTM) network, uncertainty

中图分类号: