上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (5): 613-623.doi: 10.16183/j.cnki.jsjtu.2022.032
所属专题: 《上海交通大学学报》2023年“电子信息与电气工程”专题
收稿日期:
2022-02-14
修回日期:
2022-03-20
接受日期:
2022-04-28
出版日期:
2023-05-28
发布日期:
2023-06-02
通讯作者:
文渊博
E-mail:wyb@chd.edu.cn.
作者简介:
高涛(1981-),教授,博士生导师,现主要从事数字图像处理和模式识别研究.
基金资助:
GAO Tao1, WEN Yuanbo1(), CHEN Ting1, ZHANG Jing2
Received:
2022-02-14
Revised:
2022-03-20
Accepted:
2022-04-28
Online:
2023-05-28
Published:
2023-06-02
Contact:
WEN Yuanbo
E-mail:wyb@chd.edu.cn.
摘要:
单图像去雨研究旨在利用退化的雨图恢复出无雨图像,而现有的基于深度学习的去雨算法未能有效地利用雨图的全局性信息,导致去雨后的图像损失部分细节和结构信息.针对此问题,提出一种基于窗口自注意力网络 (Swin Transformer) 的单图像去雨算法.该算法网络主要包括浅层特征提取模块和深度特征提取网络两部分.前者利用上下文信息聚合输入来适应雨痕分布的多样性,进而提取雨图的浅层特征.后者利用Swin Transformer捕获全局性信息和像素点间的长距离依赖关系,并结合残差卷积和密集连接强化特征学习,最后通过全局残差卷积输出去雨图像.此外,提出一种同时约束图像边缘和区域相似性的综合损失函数来进一步提高去雨图像的质量.实验表明,与目前单图像去雨表现优秀的算法MSPFN、 MPRNet相比,该算法使去雨图像的峰值信噪比提高0.19 dB和2.17 dB,结构相似性提高3.433%和1.412%,同时网络模型参数量下降84.59%和34.53%,前向传播平均耗时减少21.25%和26.67%.
中图分类号:
高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623.
GAO Tao, WEN Yuanbo, CHEN Ting, ZHANG Jing. A Single Image Deraining Algorithm Based on Swin Transformer[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 613-623.
表4
不同算法在合成雨图测试数据集[28-29,10,12]上的定量对比结果
算法 | Test100[ | Rain100H[ | Rain100L[ | Test2800[ | Test1200[ | 平均 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB (G/%) | SSIM (G/%) | ||||||
DerainNet[ | 22.77 | 0.810 | 14.92 | 0.592 | 27.03 | 0.884 | 24.31 | 0.861 | 23.38 | 0.835 | 22.48 (45.6)↑ | 0.796 (17.3)↑ | |||||
SEMI[ | 22.35 | 0.788 | 16.56 | 0.486 | 25.03 | 0.842 | 24.43 | 0.782 | 26.05 | 0.822 | 22.88 (43.9)↑ | 0.744 (25.5)↑ | |||||
DIDMDN[ | 22.56 | 0.818 | 17.35 | 0.524 | 25.23 | 0.741 | 28.13 | 0.867 | 29.65 | 0.901 | 24.58 (34.0)↑ | 0.770 (21.3)↑ | |||||
UMRL[ | 24.41 | 0.829 | 26.01 | 0.832 | 29.18 | 0.923 | 29.97 | 0.905 | 30.55 | 0.910 | 28.02 (17.5)↑ | 0.880 (6.14)↑ | |||||
RESCAN[ | 25.00 | 0.835 | 26.36 | 0.786 | 29.80 | 0.881 | 31.29 | 0.904 | 30.51 | 0.882 | 28.59 (15.1)↑ | 0.857 (8.98)↑ | |||||
PReNet[ | 24.81 | 0.851 | 26.77 | 0.858 | 32.44 | 0.950 | 31.75 | 0.916 | 31.36 | 0.911 | 29.42 (11.9)↑ | 0.897 (4.12)↑ | |||||
MSPFN[ | 27.50 | 0.876 | 28.66 | 0.860 | 32.40 | 0.933 | 32.82 | 0.930 | 32.39 | 0.916 | 30.75 (7.06)↑ | 0.903 (3.43)↑ | |||||
MPRNet[ | 30.27 | 0.897 | 30.41 | 0.890 | 36.40 | 0.965 | 33.64 | 0.938 | 32.91 | 0.916 | 32.73 (0.58)↑ | 0.921 (1.41)↑ | |||||
本文算法 | 28.28 | 0.913 | 30.22 | 0.904 | 37.53 | 0.979 | 33.76 | 0.952 | 34.83 | 0.924 | 32.92 | 0.934 |
[1] | 陈舒曼, 陈玮, 尹钟. 单幅图像去雨算法研究现状及展望[J]. 计算机应用研究, 2022, 39(1): 9-17. |
CHEN Shuman, CHEN Wei, YIN Zhong. Research status and prospect of single image rain removal algorithm[J]. Application Research of Computers, 2022, 39(1): 9-17. | |
[2] | DENG S, WEI M, WANG J, et al. Detail-recovery image deraining via context aggregation networks [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 14560-14569. |
[3] | HE K, GKIOXARI G, DOLLÁR P, et al. Mask RCNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2961-2969. |
[4] | 王春波, 张卫东, 张文渊, 等. 复杂交通环境中车辆的视觉检测[J]. 上海交通大学学报, 2000, 34(12): 1680-1682. |
WANG Chunbo, ZHANG Weidong, ZHANG Wen-yuan, et al. Vision-based vehicles detection in complex traffic scenes[J]. Journal of Shanghai Jiao Tong University, 2000, 34(12): 1680-1682. | |
[5] |
YANG W, TAN R T, WANG S, et al. Single image deraining: From model-based to data-driven and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 4059-4077.
doi: 10.1109/TPAMI.2020.2995190 URL |
[6] | ZHENG X, LIAO Y, GUO W, et al. Single-image-based rain and snow removal using multi-guided filter[C]//International Conference on Neural Information Processing. Daegu, South Korea: APNNS, 2013: 258-265. |
[7] |
KANG L, LIN C, FU Y. Automatic single-image-based rain streaks removal via image decomposition[J]. IEEE Transactions on Image Processing, 2011, 21(4): 1742-1755.
doi: 10.1109/TIP.2011.2179057 URL |
[8] | LUO Y, XU Y, JI H. Removing rain from a single image via discriminative sparse coding[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 3397-3405. |
[9] | LI Y, TAN R T, GUO X, et al. Rain streak removal using layer priors[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 2736-2744. |
[10] |
FU X, HUANG J, DING X, et al. Clearing the skies: A deep network architecture for single-image rain removal[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2944-2956.
doi: 10.1109/TIP.2017.2691802 pmid: 28410108 |
[11] | WEI W, MENG D, ZHAO Q, et al. Semi-supervised transfer learning for image rain removal[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 3877-3886. |
[12] | ZHANG H, PATEL V M. Density-aware single image deraining using a multi-stream dense network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 695-704. |
[13] | YASARLA R, PATEL V M. Uncertainty guided multi-scale residual learning-using a cycle spinning CNN for single image de-raining[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 8405-8414. |
[14] | LI X, WU J, LIN Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Proceedings of the European Conference on Computer Vision. Salt Lake City, UT, USA: IEEE, 2018: 254-269. |
[15] | REN D, ZUO W, HU Q, et al. Progressive image deraining networks: A better and simpler baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 3937-3946. |
[16] | JIANG K, WANG Z, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE. 2020: 8346-8355. |
[17] | ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Kuala Lumpur, Malaysia: IEEE, 2021: 14821-14831. |
[18] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Long Beach, CA, USA: NIPS, 2017: 5998-6008. |
[19] | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: Hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021: 10012-10022. |
[20] | XIAO T, DOLLAR P, SINGH M, et al. Early convolutions help transformers see better[C]//Thirty-Fifth Conference on Neural Information Processing Systems. Montreal, Canada: NIPS, 2021: 34. |
[21] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//International Conference on Leaning Representations. Caribe Hilton, San Juan, Puerto Rico: OpenReview. net, 2016: 1-13. |
[22] | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV, USA: IEEE, 2018: 1451-1460. |
[23] | LIANG J, CAO J, SUN G, et al. SwinIR: Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021: 1833-1844. |
[24] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[25] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Venice, Italy: IEEE, 2017: 4700-4708. |
[26] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
doi: 10.1109/tip.2003.819861 pmid: 15376593 |
[27] |
KAMGAR-PARSI B, ROSENFELD A. Optimally isotropic Laplacian operator[J]. IEEE Transactions on Image Processing, 1999, 8(10): 1467-1472.
doi: 10.1109/83.791975 URL |
[28] |
ZHANG H, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3943-3956.
doi: 10.1109/TCSVT.76 URL |
[29] | YANG W, TAN R T, FENG J, et al. Deep joint rain detection and removal from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Venice, Italy: IEEE, 2017: 1357-1366. |
[30] |
FU X, LIANG B, HUANG Y, et al. Lightweight pyramid networks for image deraining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(6): 1794-1807.
doi: 10.1109/TNNLS.5962385 URL |
[31] |
HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801.
doi: 10.1049/el:20080522 URL |
[32] |
MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.
doi: 10.1109/LSP.2012.2227726 URL |
[33] |
LIU L, LIU B, HUANG H, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing: Image Communication, 2014, 29(8): 856-863.
doi: 10.1016/j.image.2014.06.006 URL |
[1] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
[2] | 张峻宁, 苏群星, 王成, 徐超, 李一宁. 一种改进变换网络的域自适应语义分割网络[J]. 上海交通大学学报, 2021, 55(9): 1158-1168. |
[3] | 武光利, 郭振洲, 李雷霆, 王成祥. 融合FCN和LSTM的视频异常事件检测[J]. 上海交通大学学报, 2021, 55(5): 607-614. |
[4] | 蒋兴浩, 赵泽宇, 许可. 基于视觉的飞行器智能目标检测对抗攻击技术[J]. 空天防御, 2021, 4(1): 8-13. |
[5] | 马波,周越. 一种新的多视角人脸跟踪算法[J]. 上海交通大学学报(自然版), 2010, 44(07): 902-0906. |
[6] | 应俊豪,张秀彬. 矿石颗粒尺度分布的双圆算法[J]. 上海交通大学学报(自然版), 2010, 44(03): 384-0388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||