上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (5): 570-581.doi: 10.16183/j.cnki.jsjtu.2022.088

所属专题: 《上海交通大学学报》2023年“生物医学工程”专题

• 生物医学工程 • 上一篇    下一篇

UConvTrans:全局和局部信息交互的双分支心脏图像分割

李擎1,2, 皇甫玉彬1, 李江昀1,2(), 杨志方1, 陈鹏3, 王子涵1   

  1. 1.北京科技大学 自动化学院,北京 100083
    2.北京科技大学 工业过程知识自动化教育部重点实验室, 北京 100083
    3.中国邮政储蓄银行 金融科技创新部,北京 100808
  • 收稿日期:2022-03-31 修回日期:2022-05-19 接受日期:2022-05-24 出版日期:2023-05-28 发布日期:2023-06-02
  • 通讯作者: 李江昀 E-mail:leejy@ustb.edu.cn.
  • 作者简介:李擎(1971-),教授,从事智能控制、智能优化、图像处理研究.
  • 基金资助:
    国家自然科学基金(62173029)

UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration

LI Qing1,2, HUANGFU Yubin1, LI Jiangyun1,2(), YANG Zhifang1, CHEN Peng3, WANG Zihan1   

  1. 1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2. Key Laboratory of Knowledge Automation for Industrial Processes of the Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
    3. FINTECH Innovation Division, Postal Savings Bank of China, Beijing 100808, China
  • Received:2022-03-31 Revised:2022-05-19 Accepted:2022-05-24 Online:2023-05-28 Published:2023-06-02
  • Contact: LI Jiangyun E-mail:leejy@ustb.edu.cn.

摘要:

心脏核磁共振成像(MRI)具有噪声多、背景和目标区域相似度高、右心室形状不固定、呈月牙形或扁圆形等特点,虽然基于卷积神经网络的U型结构在医学图像分割中表现出色,但由于卷积本身的局部运算特性,提取全局信息特征能力有限,所以很难提升在心脏MRI上的分割精度.针对上述问题,提出一种全局和局部信息交互的双分支网络模型(UConvTrans).首先,利用卷积分支和Transformer分支提取局部特征和建模全局上下文信息,能够保留细节信息并抑制心脏MRI中噪声和背景区域的干扰.其次,设计了融合卷积网络和Transformer结构的模块,该模块将二者提取的特征交互融合,增强了模型表达能力,改善了右心室的分割精度,而且避免了Transformer结构在大规模数据集上预训练,可以灵活调节网络结构.此外,UConvTrans能有效地平衡精度和效率,在MICCAI 2017 ACDC 数据集上进行验证,该模型在模型参数量、计算量仅为U-Net的10%、8%的情况下,平均 Dice系数比U-Net提高了1.13%.最终,在其官方测试集上实现了右心室92.42%、心肌91.64%、左心室95.06%的Dice系数,在心肌及左心室区域取得了到目前为止最好的结果.

关键词: 医学图像分割, 心脏核磁共振图像, 卷积神经网络, Transformer模型, 编码器-解码器

Abstract:

Cardiac magnetic resonance image (MRI) segmentation has the features such as there is a lot of noise, the target areas are indistinguishable from the background, and the shape of the right ventricle is irregular. Although convolution operations are good at extracting local features, the U-shaped convolutional neural networks (CNN) structure hardly models long-distance dependency between pixels and can not achieve ideal segmentation results on cardiac MRI. To solve these problems, UConvTrans is proposed with a dual-flow U-shaped network by global and local information integration. First, the network applies the CNN branch to extract local features and capture global representations by Transformer branch, which retains local detailed features and suppresses the interference of noise and background features in cardiac MRI. Next, the bidirectional fusion module is proposed to fuse the features extracted by CNN and the Transformer with each other, enhancing the feature expression capability and improving the segmentation accuracy of the right ventricle. Besides, the parameters of network can be set flexibly because the transformer structure in the proposed method does not require pre-trained weights. The proposed method also strikes a better balance between precision and efficiency, which is evaluated on the MICCAI 2017 ACDC dataset. The results show that the network outperforms U-Net by 1.13% average dice coefficient while the parameter amount and the floating point operations are only 10% and 8% of the U-Net. Finally, the proposed method achieves a dice coefficient of 92.42% for the right ventricle, 91.64% for the myocardium, and 95.06% for the left ventricle respectively and wins the first place in the myocardium and left ventricle on test set.

Key words: medical image segmentation, cardiac magnetic resonance image (MRI), convolutional neural network (CNN), Transformer models, encoder-decoder

中图分类号: