上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (4): 482-494.doi: 10.16183/j.cnki.jsjtu.2021.453
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
收稿日期:
2021-11-11
修回日期:
2022-02-23
接受日期:
2022-02-24
出版日期:
2023-04-28
发布日期:
2023-05-05
通讯作者:
曹璞璘,副教授;E-mail:作者简介:
杨 博(1988-),教授,从事新能源发电/储能系统优化与控制,以及人工智能在智能电网中应用方面的研究.
基金资助:
YANG Bo, ZENG Chunyuan, CHEN Yijun, SHU Hongchun, CAO Pulin()
Received:
2021-11-11
Revised:
2022-02-23
Accepted:
2022-02-24
Online:
2023-04-28
Published:
2023-05-05
摘要:
为对质子交换膜燃料电池(PEMFC)进行精确建模,需要准确辨识PEMFC中的未知参数.然而,PEMFC的参数辨识是一个多变量、多峰值和强耦合的非线性优化问题,传统的参数辨识方法往往得不到满意的结果.此外,不同运行条件下产生的噪声会阻碍启发式算法(MhAs)获取精确的参数.针对该问题,提出一种基于极限学习机(ELM)的MhAs策略——ELM-MhAs,以实现PEMFC的参数辨识.利用ELM对数据进行训练以降低或消除噪声,为MhAs提供更为准确可靠的适应度函数,从而保证MhAs对PEMFC参数的精确辨识.为验证该策略的可行性和有效性,在低温、低相对湿度和高温、高相对湿度两种条件下,分别对25组电压-电流数据进行不降噪、贝叶斯正则神经网络(BRNN)降噪以及ELM降噪处理,随后对比不同数据中6种MhAs和列文伯格-马夸尔特反向传播法的参数辨识结果.实验结果表明,与不降噪和BRNN降噪处理相比,应用ELM能够显著减少数据噪声对实验数据的影响,从而有效提高MhAs的参数辨识精度.
中图分类号:
杨博, 曾春源, 陈义军, 束洪春, 曹璞璘. 极限学习机及其在质子交换膜燃料电池参数辨识中的应用[J]. 上海交通大学学报, 2023, 57(4): 482-494.
YANG Bo, ZENG Chunyuan, CHEN Yijun, SHU Hongchun, CAO Pulin. Extreme Learning Machine and Its Application in Parameter Identification of Proton Exchange Membrane Fuel Cell[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 482-494.
表2
低温低相对湿度下的参数辨识结果
算法 | 符号 | ε1 | ε2 | ε3 | ε4 | λ | Rc/Ω | b/V | RMSE/V |
---|---|---|---|---|---|---|---|---|---|
ALO | N | -1.1997 | 0.0038 | 4.7755×10-5 | -1.9539×10-4 | 22.7213 | 8.0000×10-4 | 0.0136 | 1.4918×10-3 |
B | -0.8531 | 0.0027 | 4.6077×10-5 | -1.9240×10-4 | 17.2486 | 3.0088×10-4 | 0.0148 | 1.1955×10-3 | |
E | -1.0622 | 0.0039 | 8.3563×10-5 | -1.9076×10-4 | 19.5346 | 2.1396×10-4 | 0.0162 | 1.1631×10-3 | |
DA | N | -1.1997 | 0.0038 | 4.4140×10-5 | -1.9063×10-4 | 14.1016 | 4.8523×10-4 | 0.0157 | 1.3099×10-3 |
B | -0.9920 | 0.0031 | 4.4408×10-5 | -1.9707×10-4 | 15.4621 | 3.3040×10-4 | 0.0136 | 1.3915×10-3 | |
E | -0.8531 | 0.0030 | 7.0217×10-5 | -1.9588×10-4 | 14.1585 | 5.2635×10-4 | 0.0136 | 1.2992×10-3 | |
EO | N | -0.8828 | 0.0033 | 8.8483×10-5 | -1.8694×10-4 | 20.2055 | 5.1412×10-4 | 0.0180 | 1.7501×10-3 |
B | -1.1997 | 0.0041 | 6.8525×10-5 | -1.8486×10-4 | 22.2448 | 8.0000×10-4 | 0.0181 | 2.0123×10-3 | |
E | -0.9576 | 0.0032 | 5.9925×10-5 | -1.9073×10-4 | 17.4769 | 1.1767×10-4 | 0.0152 | 8.2907×10-4 | |
GA | N | -0.8952 | 0.0033 | 8.1726×10-5 | -1.9717×10-4 | 17.9935 | 1.0162×10-4 | 0.0150 | 1.4024×10-3 |
B | -1.0374 | 0.0032 | 3.9417×10-5 | -1.9576×10-4 | 22.9887 | 1.0260×10-4 | 0.0143 | 1.7726×10-3 | |
E | -0.8727 | 0.0034 | 9.4426×10-5 | -1.9046×10-4 | 20.1161 | 2.1615×10-4 | 0.0174 | 1.1935×10-3 | |
GWO | N | -0.8558 | 0.0026 | 4.1166×10-5 | -1.8835×10-4 | 22.5918 | 6.0519×10-4 | 0.0180 | 1.6007×10-3 |
B | -1.0634 | 0.0040 | 9.4119×10-5 | -1.8632×10-4 | 20.0275 | 6.5140×10-4 | 0.0173 | 1.5371×10-3 | |
E | -1.1301 | 0.0041 | 8.3065×10-5 | -1.8739×10-4 | 14.2505 | 1.9414×10-4 | 0.0157 | 1.2038×10-3 | |
WOA | N | -0.8535 | 0.0026 | 4.3311×10-5 | -1.9027×10-4 | 13.3911 | 1.0890×10-4 | 0.0180 | 3.2404×10-3 |
B | -1.0351 | 0.0037 | 7.8048×10-5 | -1.8972×10-4 | 14.7768 | 1.0000×10-4 | 0.0136 | 1.5500×10-3 | |
E | -1.1995 | 0.0041 | 6.3044×10-5 | -1.9065×10-4 | 16.7606 | 4.0499×10-4 | 0.0143 | 1.1961×10-3 | |
LMBP | N | -1.0282 | 0.0031 | 3.7294×10-5 | -1.8648×10-4 | 20.7773 | 1.0000×10-4 | 0.0193 | 2.5661×10-3 |
B | -1.1028 | 0.0039 | 7.5117×10-5 | -1.8040×10-4 | 10.2563 | 8.0000×10-4 | 0.0136 | 2.8427×10-3 | |
E | -1.0619 | 0.0036 | 6.3838×10-5 | -1.8326×10-4 | 19.4747 | 8.0000×10-4 | 0.0188 | 2.4426×10-3 |
表3
高温、高相对湿度下的参数辨识结果
算法 | ε1 | ε2 | ε3 | ε4 | λ | Rc/Ω | b/V | RMSE/V | |
---|---|---|---|---|---|---|---|---|---|
ALO | N | -0.8531 | 0.0028 | 5.4224×10-5 | -1.9381×10-4 | 17.1927 | 1.6728×10-4 | 0.0136 | 1.4200×10-3 |
B | -0.9590 | 0.0030 | 4.6983×10-5 | -1.9038×10-4 | 15.0582 | 1.0000×10-4 | 0.0136 | 1.2983×10-3 | |
E | -0.8531 | 0.0027 | 4.5276×10-5 | -1.9218×10-4 | 18.1940 | 4.4457×10-4 | 0.0136 | 1.0970×10-3 | |
DA | N | -0.9377 | 0.0029 | 4.2164×10-5 | -1.9321×10-4 | 18.9210 | 4.1854×10-4 | 0.0136 | 1.1348×10-3 |
B | -1.1997 | 0.0040 | 6.2009×10-5 | -1.9179×10-4 | 18.2714 | 3.5924×10-4 | 0.0136 | 8.6808×10-4 | |
E | -0.8531 | 0.0028 | 5.2448×10-5 | -1.9155×10-4 | 20.7451 | 8.0000×10-4 | 0.0136 | 7.9570×10-4 | |
EO | N | -0.9304 | 0.0032 | 6.7696×10-5 | -1.9272×10-4 | 19.8194 | 1.6251×10-4 | 0.0136 | 7.9879×10-4 |
B | -0.8564 | 0.0032 | 8.3113×10-5 | -1.9239×10-4 | 22.0052 | 1.0000×10-4 | 0.0136 | 6.8046×10-4 | |
E | -1.1996 | 0.0040 | 6.3959×10-5 | -1.9278×10-4 | 22.9997 | 2.3671×10-4 | 0.0136 | 6.8623×10-4 | |
GA | N | -1.0365 | 0.0035 | 6.5236×10-5 | -1.9455×10-4 | 22.8470 | 1.2145×10-4 | 0.0137 | 1.1852×10-3 |
B | -1.0737 | 0.0033 | 4.0511×10-5 | -1.9059×10-4 | 22.8380 | 1.1889×10-4 | 0.0141 | 1.1625×10-3 | |
E | -1.1406 | 0.0043 | 9.2910×10-5 | -1.9165×10-4 | 22.7392 | 7.9682×10-4 | 0.0136 | 6.6562×10-4 | |
GWO | N | -1.1997 | 0.0043 | 8.1015×10-5 | -1.9245×10-4 | 22.3827 | 2.3883×10-4 | 0.0136 | 6.6925×10-4 |
B | -0.8894 | 0.0027 | 4.1693×10-5 | -1.9289×10-4 | 21.8924 | 4.9842×10-4 | 0.0136 | 6.9529×10-4 | |
E | -1.1327 | 0.0035 | 4.4503×10-5 | -1.9136×10-4 | 19.5772 | 1.9583×10-4 | 0.0137 | 6.3941×10-4 | |
WOA | N | -1.1493 | 0.0038 | 5.9464×10-5 | -1.8838×10-4 | 17.7311 | 1.0096×10-4 | 0.0151 | 1.7329×10-3 |
B | -0.8531 | 0.0026 | 3.8977×10-5 | -1.9118×10-4 | 13.0255 | 1.0991×10-4 | 0.0136 | 1.9095×10-3 | |
E | -1.1540 | 0.0041 | 7.6040×10-5 | -1.9381×10-4 | 18.6908 | 1.0000×10-4 | 0.0136 | 1.2166×10-3 | |
LMBP | N | -0.97694 | 0.0033 | 5.9833×10-5 | -1.9507×10-4 | 21.1973 | 1.0000×10-4 | 0.0136 | 1.5649×10-3 |
B | -1.1155 | 0.0036 | 5.6620×10-5 | -1.9381×10-4 | 22.3659 | 1.0000×10-4 | 0.0136 | 8.8141×10-4 | |
E | -1.1823 | 0.0036 | 3.8790×10-5 | -1.9396×10-4 | 23.0000 | 1.0000×10-4 | 0.0136 | 8.6141×10-4 |
[1] | 孙立明, 杨博. 蓄电池/超导混合储能系统非线性鲁棒分数阶控制[J]. 电力系统保护与控制, 2020, 48(22): 76-83. |
SUN Liming, YANG Bo. Nonlinear robust fractional-order control of battery/SMES hybrid energy storage systems[J]. Power System Protection and Control, 2020, 48(22): 76-83. | |
[2] | 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506. |
CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506. | |
[3] | 李奇, 王晓锋, 孟翔, 等. 基于在线辨识和极小值原理的PEMFC混合动力系统综合能量管理方法[J]. 中国电机工程学报, 2020, 40(21): 6991-7002. |
LI Qi, WANG Xiaofeng, MENG Xiang, et al. Comprehensive energy management method of PEMFC hybrid power system based on online identification and minimal principle[J]. Proceedings of the CSEE, 2020, 40(21): 6991-7002. | |
[4] |
YANG B, WANG J B, YU L, et al. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms[J]. Journal of Cleaner Production, 2020, 265: 121660.
doi: 10.1016/j.jclepro.2020.121660 URL |
[5] |
MACEDO-VALENCIA J, SIERRA J M, FIGUEROA-RAMÍREZ S J, et al. 3D CFD modeling of a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23425-23433.
doi: 10.1016/j.ijhydene.2016.10.065 URL |
[6] |
OLIVIER P, BOURASSEAU C, BOUAMAMA B. Dynamic and multiphysic PEM electrolysis system modelling: A bond graph approach[J]. International Journal of Hydrogen Energy, 2017, 42(22): 14872-14904.
doi: 10.1016/j.ijhydene.2017.03.002 URL |
[7] | 潘文霞, 陈健强, 张阳, 等. 混合发电系统中的质子交换膜燃料电池建模及其应用[J]. 电力系统保护与控制, 2012, 40(12): 13-18. |
PAN Wenxia, CHEN Jianqiang, ZHANG Yang, et al. Modeling of PEMFC and application in hybrid power system[J]. Power System Protection and Control, 2012, 40(12): 13-18. | |
[8] |
SALIM R, NABAG M, NOURA H, et al. The parameter identification of the Nexa 1.2 kW PEMFC’s model using particle swarm optimization[J]. Renewable Energy, 2015, 82: 26-34.
doi: 10.1016/j.renene.2014.10.012 URL |
[9] |
TIAN E L, EBADI A G, MAVALURU D, et al. Parameter derivation of a proton exchange membrane fuel cell based on coevolutionary ribonucleic acid genetic algorithm[J]. Computational Intelligence, 2019, 35(4): 1021-1041.
doi: 10.1111/coin.v35.4 URL |
[10] |
ALI M, EL-HAMEED M A, FARAHAT M A. Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer[J]. Renewable Energy, 2017, 111: 455-462.
doi: 10.1016/j.renene.2017.04.036 URL |
[11] |
EL-FERGANY A A, HASANIEN H M, AGWA A M. Semi-empirical PEM fuel cells model using whale optimization algorithm[J]. Energy Conversion and Management, 2019, 201: 112197.
doi: 10.1016/j.enconman.2019.112197 URL |
[12] |
BEN MESSAOUD R, MIDOUNI A, HAJJI S. PEM fuel cell model parameters extraction based on moth-flame optimization[J]. Chemical Engineering Science, 2021, 229: 116100.
doi: 10.1016/j.ces.2020.116100 URL |
[13] |
SUN Z, WANG N, BI Y R, et al. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm[J]. Energy, 2015, 90: 1334-1341.
doi: 10.1016/j.energy.2015.06.081 URL |
[14] | ISA Z M, NAYAN N M, ARSHAD M H, et al. Optimizing PEMFC model parameters using ant lion optimizer and dragonfly algorithm: A comparative study[J]. International Journal of Electrical and Computer Engineering, 2019, 9(6): 5295. |
[15] |
SELEEM S I, HASANIEN H M, EL-FERGANY A A. Equilibrium optimizer for parameter extraction of a fuel cell dynamic model[J]. Renewable Energy, 2021, 169: 117-128.
doi: 10.1016/j.renene.2020.12.131 URL |
[16] |
YANG B, LI D Y, ZENG C Y, et al. Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms[J]. Energy, 2021, 228: 120592.
doi: 10.1016/j.energy.2021.120592 URL |
[17] |
YANG B, ZENG C Y, WANG L, et al. Parameter identification of proton exchange membrane fuel cell via Levenberg-Marquardt backpropagation algorithm[J]. International Journal of Hydrogen Energy, 2021, 46(44): 22998-23012.
doi: 10.1016/j.ijhydene.2021.04.130 URL |
[18] | 王筱彤, 李奇, 王天宏, 等. 基于离散区间二进制序列激励信号的燃料电池EIS测量及故障诊断方法[J]. 中国电机工程学报, 2020, 40(14): 4526-4537. |
WANG Xiaotong, LI Qi, WANG Tianhong, et al. EIS measurement based on DIBS excitation signal and fault diagnosis method of fuel cell[J]. Proceedings of the CSEE, 2020, 40(14): 4526-4537. | |
[19] | 孙术发, 杨洁, 唐华林, 等. PEMFC输出特性建模与多因素仿真分析[J]. 哈尔滨工业大学学报, 2019, 51(10): 144-151. |
SUN Shufa, YANG Jie, TANG Hualin, et al. PEMFC output characteristics modeling and multi-factor simulation analysis[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 144-151. | |
[20] |
BLANCO-COCOM L, BOTELLO-RIONDA S, ORDOÑEZ L C, et al. Robust parameter estimation of a PEMFC via optimization based on probabilistic model building[J]. Mathematics and Computers in Simulation, 2021, 185: 218-237.
doi: 10.1016/j.matcom.2020.12.021 URL |
[21] | 殷豪, 曾云, 孟安波, 等. 基于奇异谱分析-模糊信息粒化和极限学习机的风速多步区间预测[J]. 电网技术, 2018, 42(5): 1467-1474. |
YIN Hao, ZENG Yun, MENG Anbo, et al. Wind speed multi-step interval prediction based on singular spectrum analysis-fuzzy information granulation and extreme learning machine[J]. Power System Technology, 2018, 42(5): 1467-1474. | |
[22] | 吴忠强, 戚松岐, 尚梦瑶, 等. 基于优化极限学习机的直流微电网并网等效建模[J]. 电力自动化设备, 2020, 40(6): 43-49. |
WU Zhongqiang, QI Songqi, SHANG Mengyao, et al. Grid-connected equivalent modeling of DC microgrid based on optimized extreme learning machine[J]. Electric Power Automation Equipment, 2020, 40(6): 43-49. | |
[23] | 邵宇鹰, 彭鹏, 张秋桥, 等. 基于极限学习机与负荷密度指标法的空间负荷预测[J]. 电力工程技术, 2021, 40(1): 86-91. |
SHAO Yuying, PENG Peng, ZHANG Qiuqiao, et al. Spatial load forecasting based on ELM and clustering algorithm[J]. Electric Power Engineering Technology, 2021, 40(1): 86-91. | |
[24] | 周锋, 孙廷玺, 权少静, 等. 基于集合经验模态分解和极限学习机的变压器油中溶解气体体积分数预测方法[J]. 高电压技术, 2020, 46(10): 3658-3665. |
ZHOU Feng, SUN Tingxi, QUAN Shaojing, et al. Predication of dissolved gases concentration in transformer oil based on ensemble empirical mode decomposition and extreme learning machine[J]. High Voltage Engineering, 2020, 46(10): 3658-3665. | |
[25] | 孙莉, 李静, 李继云, 等. 基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究[J]. 太阳能学报, 2020, 41(8): 221-226. |
SUN Li, LI Jing, LI Jiyun, et al. Research on fault diagnosis of photovoltaic power station equipment based on sparse Bayesian extreme learning machine[J]. Acta Energiae Solaris Sinica, 2020, 41(8): 221-226. | |
[26] | 陈谦, 王朝辉, 陈渊召, 等. 基于极限学习机的钢桥面板腐蚀评估及预测[J]. 材料导报, 2020, 34(14): 14099-14104. |
CHEN Qian, WANG Chaohui, CHEN Yuanzhao, et al. Corrosion assessment and prediction of steel bridge deck based on extreme learning machine[J]. Materials Reports, 2020, 34(14): 14099-14104. | |
[27] | 汪颖, 王欢, 张姝. 基于优化极限学习机的电压暂降源识别方法[J]. 电力系统自动化, 2020, 44(9): 135-143. |
WANG Ying, WANG Huan, ZHANG Shu. Recognition method of voltage sag source based on optimized extreme learning machine[J]. Automation of Electric Power Systems, 2020, 44(9): 135-143. | |
[28] |
YANG B, CHEN Y J, GUO Z X, et al. Levenberg-Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells[J]. International Journal of Energy Research, 2021, 45(12): 17903-17923.
doi: 10.1002/er.v45.12 URL |
[29] | 游志宇, 汪立伟. 高速PEMFC单片电压监测系统设计[J]. 西南民族大学学报(自然科学版), 2019, 45(5): 499-506. |
YOU Zhiyu, WANG Liwei. Design of high speed PEMFC single cell voltage monitoring system[J]. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(5): 499-506. | |
[30] | 刘佼龙, 杨莉, 刘教瑜, 等. PEMFC电压监控系统设计[J]. 微型机与应用, 2017, 36(3): 85-87. |
LIU Jiaolong, YANG Li, LIU Jiaoyu, et al. Design of PEMFC voltage monitoring system[J]. Microcomputer & Its Applications, 2017, 36(3): 85-87. | |
[31] | 钟崇霖, 马天才. 基于LTC6803的低成本燃料电池单体电压监测器设计[J]. 机电一体化, 2017, 23(1): 48-52. |
ZHONG Chonglin, MA Tiancai. Low-cost fuel cell monomer voltage monitor design based on LTC6803[J]. Mechatronics, 2017, 23(1): 48-52. | |
[32] |
KLER D, RANA K P S, KUMAR V. Parameter extraction of fuel cells using hybrid interior search algorithm[J]. International Journal of Energy Research, 2019, 43(7): 2854-2880.
doi: 10.1002/er.v43.7 URL |
[1] | 刘可真, 陈雪鸥, 陈镭丹, 林铮, 沈赋. 光伏发电系统动态离散等值模型研究[J]. 上海交通大学学报, 2023, 57(4): 412-421. |
[2] | 范厚明, 马晓斌, 彭文豪, 岳丽君, 马梦知. 送箱集卡失约下多箱区箱位分配及场桥调度优化[J]. 上海交通大学学报, 2023, 57(10): 1261-1272. |
[3] | 窦怡彬, 陈昂, 陆云超, 刘陆广, 李宗阳. 基于Levenberg-Marquardt算法的材料温度相关热物性参数辨识[J]. 空天防御, 2022, 5(2): 17-26. |
[4] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50. |
[5] | 席剑辉, 姜瀚, 陈博, 傅莉. 基于PCA-ELM的红外多光谱辐射测温[J]. 上海交通大学学报, 2021, 55(7): 891-898. |
[6] | 李春祥, 张浩怡. 基于混合多变量经验模态分解和极限学习机的非平稳过程预测[J]. 上海交通大学学报, 2020, 54(4): 376-386. |
[7] | 刘昊东, 张庆振, 郭云鹤, 茅佳雯. 基于递推最小二乘法的变体飞行器模型参数在线辨识[J]. 空天防御, 2020, 3(3): 103-110. |
[8] | 姚来鹏, 侯保林, 刘曦. 采用摩擦补偿的弹药传输机械臂自适应终端滑模控制[J]. 上海交通大学学报, 2020, 54(2): 144-151. |
[9] | 孟令通,蒋祖华,陶宁蓉,刘建峰,李柏鹤. 船舶组合分段堆场调度方法[J]. 上海交通大学学报, 2019, 53(7): 780-788. |
[10] | 张林林,胡熊伟,李鹏,石访,于之虹. 基于极限学习机的电力系统暂态稳定评估方法[J]. 上海交通大学学报, 2019, 53(6): 749-756. |
[11] | 潘鹤斌, 宋波涛, 王皓. 基于优化法的飞行器复杂结构连接面刚度参数辨识[J]. 空天防御, 2019, 2(2): 1-4. |
[12] | 姜勇,李洋,周阳,巩建鸣. 奥氏体不锈钢双极板的低温超饱和气体渗碳表面改性[J]. 上海交通大学学报(自然版), 2019, 53(2): 247-252. |
[13] | 刘敏,张英堂,李志宁,范红波. 基于增量稀疏核极限学习机的柴油机故障在线诊断[J]. 上海交通大学学报(自然版), 2019, 53(2): 217-224. |
[14] | 钟国强1,2,王浩1,张国华1,覃卫民1,王成汤1,2,熊俊峰1,2. 基于RS-MIV-ELM模型的基坑水平位移影响因素分析和预测[J]. 上海交通大学学报(自然版), 2018, 52(11): 1508-1515. |
[15] | 李坦坦,雷明. 基于启发式逻辑的概率假设密度滤波高效航迹起始方法[J]. 上海交通大学学报(自然版), 2018, 52(1): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||