上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (4): 473-481.doi: 10.16183/j.cnki.jsjtu.2021.509
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
吴雨杭1, 黎灿兵1(), 李新喜2, 顾慧军3, 顾善华3, 郑小耿3
收稿日期:
2021-12-16
修回日期:
2022-02-10
接受日期:
2022-02-21
出版日期:
2023-04-28
发布日期:
2023-05-05
通讯作者:
黎灿兵,教授,博士生导师;E-mail: 作者简介:
吴雨杭(1999-),博士生,主要从事电网级储能研究.
基金资助:
WU Yuhang1, LI Canbing1(), LI Xinxi2, GU Huijun3, GU Shanhua3, ZHENG Xiaogeng3
Received:
2021-12-16
Revised:
2022-02-10
Accepted:
2022-02-21
Online:
2023-04-28
Published:
2023-05-05
摘要:
为解决现有钛酸锂电池在低温下电池容量衰减和充放电过程中的电池胀气问题,从电池内外部结构和制备工艺流程两方面提出新型钛酸锂电池结构设计.在电池内部模仿电容式结构,融合电容器的物理储能方式和蓄能电池的化学储能方式,提升电池在低温环境下的充放电性能.在制备工艺上采取柱形锂离子电池含浸新技术,提高含浸效率,减少电池内部水分,部分解决电池胀气问题,并进行相关性能测试.结果表明,新型钛酸锂电池容量保持率可在9 548次充放电循环下达到92.5%,低温环境下电池容量保持率大于75%,该方法有效提升了钛酸锂电池性能.
中图分类号:
吴雨杭, 黎灿兵, 李新喜, 顾慧军, 顾善华, 郑小耿. 电容式钛酸锂电池的设计及制备方法[J]. 上海交通大学学报, 2023, 57(4): 473-481.
WU Yuhang, LI Canbing, LI Xinxi, GU Huijun, GU Shanhua, ZHENG Xiaogeng. Design and Preparation Method of Capacitive Lithium-Titanate Battery[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 473-481.
表4
循环寿命测试的实验数据
循环次数 | HTC1020 | HTC1450 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 C | 10 C | 1 C | 10 C | |||||||
容量/(mA·h) | 保持率/% | 容量/(mA·h) | 保持率/% | 容量/(mA·h) | 保持率/% | 容量/(mA·h) | 保持率/% | |||
0 | 70.6 | 100.0 | 57.1 | 100 | 537.1 | 100.0 | 474.2 | 100.0 | ||
200 | 70.4 | 99.7 | 60.5 | 106 | 535.6 | 99.7 | 496.8 | 104.8 | ||
400 | 66.8 | 94.6 | 60.7 | 100 | 520.1 | 96.8 | 468.0 | 98.7 | ||
600 | 66.2 | 93.7 | 60.4 | 97 | 503.5 | 93.7 | 459.4 | 96.9 | ||
800 | 63.3 | 89.7 | 57.1 | 94 | 497.3 | 92.6 | 431.5 | 91.0 | ||
1 000 | 62.7 | 88.9 | 55.0 | 91 | 496.1 | 92.4 | 439.1 | 92.6 |
[1] | 叶佳, 郑美玟. 铅酸蓄电池和锂电池的可持续发展调查报告[J]. 应用能源技术, 2020, 268(4): 15-17. |
YE Jia, ZHENG Meiwen. Investigation report on sustainable development of lead-acid batteries and lithium batteries[J]. Applied Energy Technology, 2020, 268(4): 15-17. | |
[2] | 张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228. |
ZHANG Mingjie, YANG Kai, DUAN Shuning, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltage Engineering, 2017, 43(7): 2221-2228. | |
[3] | 蒋婉蓉, 解云川, 张志成. 高储能聚合物基纳米复合电介质[J]. 高电压技术, 2017, 43(7): 2234-2240. |
JIANG Wanrong, XIE Yunchuan, ZHANG Zhi-cheng. Polymer-based nanocomposite dielectrics with high energy storage capacity[J]. High Voltage Engineering, 2017, 43(7): 2234-2240. | |
[4] |
LIU X B, LI C B, SHAHIDEHPOUR M, et al. Fault current hierarchical limitation strategy for fault ride-through scheme of microgrid[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6566-6579.
doi: 10.1109/TSG.5165411 URL |
[5] |
LI C B, CAO Y J, ZHANG M, et al. Hidden benefits of electric vehicles for addressing climate change[J]. Scientific Reports, 2015, 5: 9213.
doi: 10.1038/srep09213 pmid: 25790439 |
[6] | 李春晓. 锂离子电池负极材料研究进展[J]. 新材料产业, 2017(9): 27-33. |
LI Chunxiao. Research progress of anode materials for lithium ion batteries[J]. Advanced Materials Industry, 2017(9): 27-33. | |
[7] | 罗军, 田刚领, 张柳丽, 等. 钛酸锂体系锂离子电池综述[J]. 电源技术, 2019, 43(4): 693-695. |
LUO Jun, TIAN Gangling, ZHANG Liuli, et al. Review of lithium titanate anode Li-ion battery[J]. Chinese Journal of Power Sources, 2019, 43(4): 693-695. | |
[8] |
ZHOU Z B, BENBOUZID M, FRÉDÉRIC CHARPENTIER J, et al. A review of energy storage technologies for marine current energy systems[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 390-400.
doi: 10.1016/j.rser.2012.10.006 URL |
[9] |
OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Electrochemical Society, 1995, 142(5): 1431-1435.
doi: 10.1149/1.2048592 |
[10] | 唐堃, 金虹, 潘广宏, 等. 钛酸锂电池技术及其产业发展现状[J]. 新材料产业, 2015(9): 12-17. |
TANG Kun, JIN Hong, PAN Guanghong, et al. Lithium titanate battery technology and its industrial development status[J]. Advanced Materials Industry, 2015(9): 12-17. | |
[11] |
CHANG-JIAN C W, HO B C, CHUNG C K, et al. Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries[J]. Ceramics International, 2018, 44(18): 23063-23072.
doi: 10.1016/j.ceramint.2018.09.110 URL |
[12] |
LIU Z M, ZHANG N Q, WANG Z J, et al. Highly dispersed Ag nanoparticles (10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery[J]. Journal of Power Sources, 2012, 205: 479-482.
doi: 10.1016/j.jpowsour.2012.01.068 URL |
[13] |
DING Z J, ZHAO L, SUO L M, et al. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: A combined experimental and theoretical study[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(33): 15127-15133.
doi: 10.1039/c1cp21513b URL |
[14] | 王灿, 马盼, 祝国梁, 等. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1): 59-67. |
WANG Can, MA Pan, ZHU Guoliang, et al. LIB long life graphite electrode: State-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(1): 59-67. | |
[15] |
SINGER J P, BIRKE K P. Kinetic study of low temperature capacity fading in Li-ion cells[J]. Journal of Energy Storage, 2017, 13: 129-136.
doi: 10.1016/j.est.2017.07.002 URL |
[16] |
DOLOTKO O, SENYSHYN A, MÜHLBAUER M J, et al. Neutron diffraction study of Li4Ti5O12 at low temperatures[J]. Solid State Sciences, 2014, 36: 101-106.
doi: 10.1016/j.solidstatesciences.2014.08.002 URL |
[17] |
ZHU Y R, YIN L C, YI T F, et al. Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material[J]. Journal of Alloys and Compounds, 2013, 547: 107-112.
doi: 10.1016/j.jallcom.2012.08.113 URL |
[18] |
KULOVA T L. Effect of temperature on reversible and irreversible processes during lithium intercalation in graphite[J]. Russian Journal of Electrochemistry, 2004, 40(10): 1052-1059.
doi: 10.1023/B:RUEL.0000046490.73990.c3 URL |
[19] |
BELHAROUAK I, KOENIG G M Jr, TAN T, et al. Performance degradation and gassing of Li4Ti5O12/LiMn2O4 Lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(8): A1165-A1170.
doi: 10.1149/2.013208jes URL |
[20] |
WU K, YANG J, LIU Y, et al. Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cell at elevated temperature[J]. Journal of Power Sources, 2013, 237: 285-290.
doi: 10.1016/j.jpowsour.2013.03.057 URL |
[21] |
SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 2020, 19(11): 1151-1163.
doi: 10.1038/s41563-020-0747-z |
[22] | 顾慧军. 柱形锂离子电池电芯含浸方法及在锂离子电池生产中的应用: CN 105336990A[P]. 2016-02-17 [2021-10-28]. |
GU Huijun. Impregnation method for cell of cylindrical lithium ion battery and application in production of lithium ion battery: CN 105336990A[P]. 2016-02-17 [2021-10-28]. | |
[23] |
TUSSEEVA E K, KULOVA T L, SKUNDIN A M. Temperature effect on the behavior of a lithium titanate electrode[J]. Russian Journal of Electrochemistry, 2018, 54(12): 1186-1194.
doi: 10.1134/S1023193518140082 |
[24] | 王瑜东, 杨凯, 高飞, 等. 钛酸锂电池胀气程度与循环性能的关系研究[J]. 高电压技术, 2018, 44(1): 152-159. |
WANG Yudong, YANG Kai, GAO Fei, et al. Study on the relationship between flatulence and cycle performance of lithium titanate battery[J]. High Voltage Engineering, 2018, 44(1): 152-159. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||