上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (1): 76-83.doi: 10.16183/j.cnki.jsjtu.2021.394
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
收稿日期:
2021-10-08
修回日期:
2021-09-22
出版日期:
2023-01-28
发布日期:
2023-01-13
通讯作者:
黄永华
E-mail:huangyh@sjtu.edu.cn.
作者简介:
沈 逸(1999-),硕士生,从事低温传热和测试研究.
基金资助:
SHEN Yi1, CAO Jiaxing2, HUANG Yonghua1()
Received:
2021-10-08
Revised:
2021-09-22
Online:
2023-01-28
Published:
2023-01-13
Contact:
HUANG Yonghua
E-mail:huangyh@sjtu.edu.cn.
摘要:
以往低温接触热阻测量研究主要集中于液氮温区及以上,77 K以下温区的固体接触热阻数据鲜有报道.基于RDK-408D2型二级G-M低温制冷机,采用叠片法测量不同粗糙度和螺栓转矩下黄铜样品在10~30 K温区的接触热阻,并讨论不同因素对接触热阻的影响程度.结果表明:该温区黄铜接触面接触热阻值在6.89×10-4~ 1.86×10-2 m2·W/K之间,接触面粗糙度越小、温度越高、螺栓转矩越大,接触热阻就越小,结论与常规定性认识相符.该低温实验数据能够为相关低温应用设计中的连接热阻计算提供一定支持.
中图分类号:
沈逸, 曹家兴, 黄永华. 采用叠片法的黄铜低温接触热阻测量[J]. 上海交通大学学报, 2023, 57(1): 76-83.
SHEN Yi, CAO Jiaxing, HUANG Yonghua. Measurement of Cryogenic Thermal Contact Resistance of Brass by Lamination Method[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 76-83.
表1
主要设备部件型号及参数
设备和部件 | 型号 | 数量 | 精度 |
---|---|---|---|
真空泵 | PFEIFFER HiCube 80 Eco | 1 | 10-4 Pa |
冰点仪 | OMEGA TRCIII-A | 1 | 0.1 K |
温控仪 | Lake Shore Model 335 | 1 | ±0.01 K |
数据采集仪 | Keysight 34972A | 1 | 6 |
热电偶 | OMEGA TT-T-36 | 8 | 0.1 K |
加热器 | 非标定制25 Ω加热棒 | 1 | 25±0.5 Ω |
标准温度计 | LakeShore CX-1070-CU-HT | 2 | 0.05 K |
数据采集终端 | Lenovo ThinkPad T410 | 1 | |
扭力扳手 | ADEMA数显式扳手 | 1 | ±2% |
穿仓引线 | 26芯电缆线 | 1 | |
一级冷屏 | 镀镍铜屏 | 1 | 厚1 mm |
真空罩 | 铝制 | 1 |
[1] |
FUJII Y, MORITANI A, NAKAI J. Photoacoustic spectroscopy theory for multi-layered samples and interference effect[J]. Japanese Journal of Applied Physics, 1981, 20(2): 361.
doi: 10.1143/JJAP.20.361 URL |
[2] |
BAUMANN J, TILGNER R. Determining photothermally the thickness of a buried layer[J]. Journal of Applied Physics, 1985, 58(5): 1982-1985.
doi: 10.1063/1.336006 URL |
[3] |
SALAZAR A, SÁNCHEZ-LAVEGA A. Thermal diffusivity measurements using linear relations from photothermal wave experiments[J]. Review of Scientific Instruments, 1994, 65(9): 2896-2900.
doi: 10.1063/1.1144635 URL |
[4] |
KWON O, SHI L, MAJUMDAR A. Scanning thermal wave microscopy (STWM)[J]. Journal of Heat Transfer, 2003, 125: 156-163.
doi: 10.1115/1.1518492 URL |
[5] |
LARSON K B, KOYAMA K. Measurement by the flash method of thermal diffusivity, heart capacity, and thermal conductivity in two-layer composite samples[J]. Journal of Applied Physics, 1968, 39(9): 4408-4416.
doi: 10.1063/1.1656985 URL |
[6] |
LE NILIOT C, GALLET P. Infrared thermography applied to the resolution of inverse heat conduction problems: Recovery of heat line sources and boundary conditions[J]. Revue Générale De Thermique, 1998, 37(8): 629-643.
doi: 10.1016/S0035-3159(98)80041-X URL |
[7] | 周孑民, 朱再兴, 谢东江, 等. 常功率平面热源法测试耐火材料热物性的研究[J]. 中南大学学报(自然科学版), 2011, 42(5): 1467-1472. |
ZHOU Jiemin, ZHU Zaixing, XIE Dongjiang, et al. Thermal physical property of refractory material measured by plane heat source method with constant heat rate[J]. Journal of Central South University (Science and Technology), 2011, 42(5): 1467-1472. | |
[8] |
CAHILL D G. Thermal conductivity measurement from 30 to 750 K: The 3ω method[J]. Review of Scientific Instruments, 1990, 61(2): 802-808.
doi: 10.1063/1.1141498 URL |
[9] | YOUNG D A, THOMSEN C, GRAHN H T, et al. Heat flow in glasses on a picosecond timescale[C]//Phonon Scattering in Condensed Matter V. Berlin, Heidelberg: Springer-Verlag, 1986: 49-51. |
[10] |
CHEN M J, LI Q, ZHANG P. Experimental investigation of high temperature thermal contact resistance of thin disk samples using infrared camera in vacuum condition[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119749.
doi: 10.1016/j.ijheatmasstransfer.2020.119749 URL |
[11] |
BI D M, CHEN H X, YE T. Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures[J]. Cryogenics, 2012, 52(7/8/9): 403-409.
doi: 10.1016/j.cryogenics.2012.03.006 URL |
[12] | 彭小方, 石零, 王建, 等. 低温下Cu-Cu固体间界面热阻的激光光热法研究[J]. 低温与特气, 2006, 24(5): 34-37. |
PENG Xiaofang, SHI Ling, WANG Jian, et al. Experimental research on the thermal contact resistance by photothermal measurement between Cu-Cu in low temperature[J]. Low Temperature and Specialty Gases, 2006, 24(5): 34-37. | |
[13] | 应济, 贾昱, 陈子辰, 等. 粗糙表面接触热阻的理论和实验研究[J]. 浙江大学学报(自然科学版), 1997, 31(1): 104-109. |
YING Ji, JIA Yu, CHEN Zichen, et al. Theoretical and experimental research on the contact thermal resistance between real surface[J]. Journal of Zhejiang University (Natural Science), 1997, 31(1): 104-109. | |
[14] | 刘菊. 固体界面接触热阻及导热系数测量的实验研究[D]. 武汉: 华中科技大学, 2011. |
LIU Ju. The experimental research on measurement of thermal contact resistance of two contacted solids and thermal conductivity[D]. Wuhan: Huazhong University of Science and Technology, 2011. | |
[15] | 韩雪峰. 航天器常用固体材料接触热阻测量系统的研究[D]. 长春: 长春工业大学, 2016. |
HAN Xuefeng. Research on the measurement system of thermal contact resistance of aerospace solid materials[D]. Changchun: Changchun University of Technology, 2016. | |
[16] | 王安良, 马松阳. 一种测量板间接触热阻的新方法[J]. 工程热物理学报, 2017, 38(11): 2393-2398. |
WANG Anliang, MA Songyang. A new method for measuring the thermal contact resistance between plates[J]. Journal of Engineering Thermophysics, 2017, 38(11): 2393-2398. | |
[17] |
YU J E, YEE A L, SCHWALL R E. Thermal conductance of Cu/Cu and Cu/Si interfaces from 85 K to 300 K[J]. Cryogenics, 1992, 32(7): 610-615.
doi: 10.1016/0011-2275(92)90291-H URL |
[18] | 徐烈, 张涛, 赵兰萍, 等. 双热流法测定低温真空下固体界面的接触热阻[J]. 低温工程, 1999(4): 185-189. |
XU Lie, ZHANG Tao, ZHAO Lanping, et al. Using double heat flux meter method to measure the thermal contact resistance of solid material at low temperature and vacuum[J]. Cryogenics, 1999(4): 185-189. | |
[19] |
KUMAR S S, RAMAMURTHI K. Thermal contact conductance of pressed contacts at low temperatures[J]. Cryogenics, 2004, 44(10): 727-734.
doi: 10.1016/j.cryogenics.2004.04.004 URL |
[20] |
XU R P, FENG H D, ZHAO L P, et al. Experimental investigation of thermal contact conductance at low temperature based on fractal description[J]. International Communications in Heat and Mass Transfer, 2006, 33(7): 811-818.
doi: 10.1016/j.icheatmasstransfer.2006.02.023 URL |
[21] | POWELL R L, ROGERS W M, RODER H M. Thermal conductivities of copper and copper alloys[C]//Advances in Cryogenic Engineering. Boston, MA, USA: Springer, 1960: 166-171. |
[1] | 于淼, 胡敬轩, 张寿志, 魏静静, 孙建群, 吴屹潇. 基于PMU梯度动态偏差的新型电力系统快速稳定性[J]. 上海交通大学学报, 2024, 58(1): 40-49. |
[2] | 杨恩博, 金宇鹏, 杨光, 黄永华, 王天祥, 雷刚, 吴静怡. 内角钝度对微重力下液体推进剂毛细流动特性的影响[J]. 上海交通大学学报, 2023, 57(6): 739-746. |
[3] | 杜立彬, 崔永超, 刘 杰, 张晓波. 投弃式温盐深测量仪发展概述[J]. 海洋工程装备与技术, 2023, 10(3): 33-40. |
[4] | 杨晓洁, 常雪婷, 范润华. 快速多重旋转碾压法对Ti6Al4V钛合金组织和性能的影响[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 264-269. |
[5] | 程斌, 黄斌, 李得睿. 基于平行激光测距的图像自标定方法[J]. 上海交通大学学报, 2022, 56(7): 850-857. |
[6] | 沙海东, 黄沛尧, 王舟, 崔祥仪, 巨永林, 严锐, 李帅杰, 王秀丽. 超高纯氙去除氪低温精馏塔HYSYS模拟优化[J]. 上海交通大学学报, 2021, 55(7): 842-849. |
[7] | 严锐, 王舟, 崔祥仪, 巨永林, 沙海东, 李帅杰, 黄沛尧, 王秀丽. PandaX-4T超高纯氙去除氪低温精馏系统运行分析[J]. 上海交通大学学报, 2021, 55(7): 834-841. |
[8] | 周俊杰, 余建波. 基于机器视觉的加工刀具磨损量在线测量[J]. 上海交通大学学报, 2021, 55(6): 741-749. |
[9] | 王煜林, 周登极, 郝佳瑞, 黄大文. 一种基于可解释神经网络模型的压缩机功率软测量方法[J]. 上海交通大学学报, 2021, 55(6): 774-780. |
[10] | 李卓, 时庆峰, 王欣, 高彦泽, 施蕊. 低温红外场景生成技术研究[J]. 空天防御, 2020, 3(4): 1-7. |
[11] | 马跃华, 王磊, 孙海涛, 余科. MIMO雷达在防空系统中的应用分析[J]. 空天防御, 2020, 3(2): 52-58. |
[12] | 来颜博, 阎高伟, 程兰, 陈泽华. 基于动态独立成分分析和动态主成分分析的测地线流式核无监督回归模型[J]. 上海交通大学学报, 2020, 54(12): 1269-1277. |
[13] | 王松,刘明星,赵淄弘,王舜. 一种新型反应堆安全级DCS模拟量隔离技术[J]. 上海交通大学学报, 2019, 53(Sup.1): 93-97. |
[14] | 陈建文,宫成军. 国产棒位系统故障分析及处理措施[J]. 上海交通大学学报, 2019, 53(Sup.1): 33-44. |
[15] | 何玉鹏,姜静,孙勇,徐世豪,郑国敏,牟叶威. 堆外核测系统常见噪声干扰分析与抑制[J]. 上海交通大学学报, 2019, 53(Sup.1): 7-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||