上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (5): 564-575.doi: 10.16183/j.cnki.jsjtu.2021.024
收稿日期:
2021-01-25
出版日期:
2022-05-28
发布日期:
2022-06-07
通讯作者:
夏唐斌
E-mail:xtbxtb@sjtu.edu.cn
作者简介:
舒俊清(1999-),女,安徽省安庆市人,硕士生,主要研究方向为智能预测与健康管理.
基金资助:
SHU Junqing, XU Yuhui, XIA Tangbin(), PAN Ershun, XI Lifeng
Received:
2021-01-25
Online:
2022-05-28
Published:
2022-06-07
Contact:
XIA Tangbin
E-mail:xtbxtb@sjtu.edu.cn
摘要:
针对传统相似性方法忽略设备故障模式、退化速度以及监测数据长度间差异性的问题,提出多故障模式下多尺度相似性集成(MFM-MSEN)方法,以提高寿命预测精度并表征预测不确定性.通过训练故障分类模型,设计时序加权预测策略,识别设备故障模式,实现训练与测试设备间的分类匹配并降低匹配复杂度.在此基础上提出多尺度集成策略,可克服单尺度方法的数据利用率限制,并增强预测泛化性能,在多个尺度上匹配健康指标间的相似性,进一步采用核密度估计集成多尺度预测结果,以高精度拟合剩余寿命概率分布.实验结果证明, MFM-MSEN方法具有应对设备退化差异的优越性.
中图分类号:
舒俊清, 许昱晖, 夏唐斌, 潘尔顺, 奚立峰. 面向多故障模式的多尺度相似性集成寿命预测[J]. 上海交通大学学报, 2022, 56(5): 564-575.
SHU Junqing, XU Yuhui, XIA Tangbin, PAN Ershun, XI Lifeng. A Multiscale Similarity Ensemble Methodology for Remaining Useful Life Prediction in Multiple Fault Modes[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 564-575.
表4
与现有先进方法比较结果
方法种类 | 方法名称 | RMSE | Score | |||||
---|---|---|---|---|---|---|---|---|
FD003 | FD004 | 总计 | FD003 | FD004 | 总计 | |||
基于相似性的方法 | MFM-MSEN 方法 | 15.07 | 22.22 | 20.42 | 609.97 | 2641.05 | 3251.02 | |
传统单尺度方法 | 16.89 | 24.62 | 22.67 | 1280.43 | 5009.31 | 6289.74 | ||
EN[ | 19.16 | 22.15 | 21.33 | 1727 | 2901 | 4628 | ||
BiLSTM-ED[ | 17.48 | 23.49 | 21.93 | 574 | 3202 | 3776 | ||
RULCLIPPER[ | 16.00 | 24.33 | 22.26 | 317 | 3132 | 3449 | ||
RUL直接映射法 | DCNN[ | 12.64 | 23.31 | 20.81 | 284.1 | 12466 | 12750.1 | |
D-LSTM[ | 16.18 | 28.17 | 25.31 | 852 | 5550 | 6402 | ||
MODBNE[ | 12.51 | 28.66 | 25.11 | 421.91 | 6557.62 | 6979.53 |
[1] |
XIA T B, DONG Y F, XIAO L, et al. Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering & System Safety, 2018, 178: 255-268.
doi: 10.1016/j.ress.2018.06.021 URL |
[2] | ZHUO P C, ZHU Y, WU W X, et al. Real-time fault diagnosis for gas turbine blade based on output-hidden feedback Elman neural network[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 95-102. |
[3] |
YU W N, KIM I Y, MECHEFSKE C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129: 764-780.
doi: 10.1016/j.ymssp.2019.05.005 URL |
[4] |
KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2276-2285.
doi: 10.1109/TIE.2016.2623260 URL |
[5] |
LIU Q M, DONG M, LV W, et al. A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 217-232.
doi: 10.1016/j.ymssp.2015.03.029 URL |
[6] |
LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11.
doi: 10.1016/j.ress.2017.11.021 URL |
[7] | ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]// 2017 IEEE International Conference on Prognostics and Health Management. Dallas, TX, USA: IEEE, 2017: 88-95. |
[8] |
ZHANG C, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306-2318.
doi: 10.1109/TNNLS.2016.2582798 URL |
[9] | SONG Y, SHI G, CHEN L Y, et al. Remaining useful life prediction of turbofan engine using hybrid model based on autoencoder and bidirectional long short-term memory[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup.1): 85-94. |
[10] | 宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的涡扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25(7): 1611-1619. |
SONG Y, XIA T B, ZHENG Y, et al. Remaining useful life prediction of turbofan engine based on Autoencoder-BLSTM[J]. Computer Integrated Manufacturing Systems, 2019, 25(7): 1611-1619. | |
[11] | WANG T Y, YU J B, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems[C]// 2008 International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-6. |
[12] |
CANNARILE F, BARALDI P, ZIO E. An evidential similarity-based regression method for the prediction of equipment remaining useful life in presence of incomplete degradation trajectories[J]. Fuzzy Sets and Systems, 2019, 367: 36-50.
doi: 10.1016/j.fss.2018.10.008 URL |
[13] |
CAI H S, JIA X D, FENG J S, et al. A similarity based methodology for machine prognostics by using kernel two sample test[J]. ISA Transactions, 2020, 103: 112-121.
doi: 10.1016/j.isatra.2020.03.007 URL |
[14] |
LIU Y C, HU X F, ZHANG W J. Remaining useful life prediction based on health index similarity[J]. Reliability Engineering & System Safety, 2019, 185: 502-510.
doi: 10.1016/j.ress.2019.02.002 URL |
[15] |
YU W N, KIM I Y, MECHEFSKE C. An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering & System Safety, 2020, 199: 106926.
doi: 10.1016/j.ress.2020.106926 URL |
[16] |
HOU M R, PI D C, LI B R. Similarity-based deep learning approach for remaining useful life prediction[J]. Measurement, 2020, 159: 107788.
doi: 10.1016/j.measurement.2020.107788 URL |
[17] |
XIA T B, SONG Y, ZHENG Y, et al. An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115: 103182.
doi: 10.1016/j.compind.2019.103182 URL |
[18] |
PENG W W, YE Z S, CHEN N. Bayesian deep-learning-based health prognostics toward prognostics uncertainty[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2283-2293.
doi: 10.1109/TIE.2019.2907440 URL |
[19] | SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine Run-to-failure simulation[C]// 2008 International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-9. |
[20] | RAMASSO E. Investigating computational geometry for failure prognostics in presence of imprecise health indicator: Results and comparisons on C-MAPSS datasets[C]// Second European Conference of the Prognostics and Health Management Society 2014. Nantes, France: CCSD, 2014: 1-13. |
[1] | 袁丁,孙慧贤,闫云斌,全厚德. 节点本振误差对分布式发射波束形成性能的影响[J]. 上海交通大学学报, 2020, 54(1): 92-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||