上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (5): 576-583.doi: 10.16183/j.cnki.jsjtu.2020.361
收稿日期:
2020-11-06
出版日期:
2022-05-28
发布日期:
2022-06-07
通讯作者:
张执南
E-mail:zhinanz@sjtu.edu.cn
作者简介:
邢璐(1996-),女,辽宁省朝阳市人,硕士生,研究方向为摩擦学测试系统的设计与开发.
基金资助:
XING Lua, HUA Yixionga, ZHANG Zhinana,b()
Received:
2020-11-06
Online:
2022-05-28
Published:
2022-06-07
Contact:
ZHANG Zhinan
E-mail:zhinanz@sjtu.edu.cn
摘要:
提出一种机电产品概念设计的创新方法,建立“需求-环境-冲突-原理解-解决方案”的设计逻辑.利用面向环境的设计方法识别设计需求与环境约束之间存在的矛盾,对需求与环境进行迭代分析,解耦复杂抽象的专业问题.根据发明问题解决理论生成原理解,得到针对具体需求的产品解决方案,确保了创新的方向性和产品设计方案生成的系统性以及设计流程的规范性.利用航空发动机气压可调静子叶片转轴衬套系统的摩擦磨损试验机设计案例,验证了所提设计方法的合理性和有效性.
中图分类号:
邢璐, 华一雄, 张执南. 集成EBD和TRIZ的机电系统概念设计方法[J]. 上海交通大学学报, 2022, 56(5): 576-583.
XING Lu, HUA Yixiong, ZHANG Zhinan. Conceptual Design of Mechatronics System by Integrating EBD and TRIZ[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 576-583.
表4
不同需求的方案设计和评价
设计方案 | 对标设计[ | 改进设计 | |
---|---|---|---|
需求1 | 设计流程 | 需求收集:模拟大载荷 资料分析:对知识及文献收集整合 头脑风暴:分析选取合理方法 解决方案:水平加载机构,手动调节对中装置 | 识别冲突:重载稳定与简化零件 提取参数:整体稳定性,物质的数量 得到原理解:动态化发明原理 解决方案:竖直加载机构,自动对中机构 |
方案评价 | 水平施加载荷上限较小 手动调节有难度 零件较多,装配空间有限 | 竖直加载载荷上限较大 自动对中机构快速调节 零件简化,易于加工装配 | |
需求2 | 设计流程 | 需求收集:实现往复回转运动 资料分析:对知识及文献收集整合 头脑风暴:分析选取合理方法 解决方案:滚轮与斜切凸轮机构 | 识别冲突:往复回转运动精准控制,装配方便 提取参数:可靠性,使用方便性 得到原理解:多维度过渡 解决方案:四连杆机构 |
方案评价 | 凸轮易磨损,产生精度损失 接触面需定期补充润滑油 | 能够精准控制回转角度 节约安装空间 |
[1] |
ZHANG H Z, HAN X, LI R, et al. A new conceptual design method to support rapid and effective mapping from product design specification to concept design[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5): 2375-2389.
doi: 10.1007/s00170-016-8576-6 URL |
[2] |
YAZDANI M, CHATTERJEE P, ZAVADSKAS E K, et al. Integrated QFD-MCDM framework for green supplier selection[J]. Journal of Cleaner Production, 2017, 142: 3728-3740.
doi: 10.1016/j.jclepro.2016.10.095 URL |
[3] |
PACHECO D, PERGHER I, JUNIOR J, et al. Exploring the integration between lean and the theory of constraints in operations management[J]. International Journal of Lean Six Sigma, 2019, 10(3): 718-742.
doi: 10.1108/IJLSS-08-2017-0095 URL |
[4] | ZENG Y. Environment-based design (EBD): A methodology for transdisciplinary design[J]. Journal of Integrated Design and Process Science, 2015, 19(1): 5-24. |
[5] | AL-FEDAGHI S. Function-behavior-structure model of design: An alternative approach[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(7): 133-139. |
[6] | LI M, CAO S, QIN Z Q. Creation method and evolution evaluation of concept knowledge maps[J]. Journal of Internet Technology, 2016, 17(2): 179-189. |
[7] | AWASTHI A, OMRANI H. A goal-oriented approach based on fuzzy axiomatic design for sustainable mobility project selection[J]. International Journal of Systems Science: Operations & Logistics, 2019, 6(1): 86-98. |
[8] | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. | |
[9] |
KAR A K. Bio inspired computing-A review of algorithms and scope of applications[J]. Expert Systems With Applications, 2016, 59: 20-32.
doi: 10.1016/j.eswa.2016.04.018 URL |
[10] |
MANSOOR M, MARIUN N, ABDULWAHAB N I. Innovating problem solving for sustainable green roofs: Potential usage of TRIZ-Theory of inventive problem solving[J]. Ecological Engineering, 2017, 99: 209-221.
doi: 10.1016/j.ecoleng.2016.11.036 URL |
[11] |
FIORINESCHI L, FRILLICI F S, ROTINI F, et al. Exploiting TRIZ Tools for enhancing systematic conceptual design activities[J]. Journal of Engineering Design, 2018, 29(6): 259-290.
doi: 10.1080/09544828.2018.1473558 URL |
[12] |
CHAKRABORTY K, MONDAL S, MUKHERJEE K. Analysis of product design characteristics for remanufacturing using Fuzzy AHP and Axiomatic Design[J]. Journal of Engineering Design, 2017, 28(5): 338-368.
doi: 10.1080/09544828.2017.1316014 URL |
[13] |
LI Y F, ZHU L P. Optimisation of product form design using fuzzy integral-based Taguchi method[J]. Journal of Engineering Design, 2017, 28(7/8/9): 480-504.
doi: 10.1080/09544828.2017.1346239 URL |
[14] |
CHEN S, YIN N, YU Q, et al. A novel tribometer for investigating bushing wear[J]. Wear, 2019, 430/431: 263-271.
doi: 10.1016/j.wear.2019.05.014 URL |
[15] | SUN X, ZENG Y, ZHOU F. Environment-based design (EBD) approach to developing quality management systems: A case study[J]. Journal of Integrated Design & Process ence, 2011, 15(2): 53-70. |
[16] | 曾勇, 张执南. 面向环境的设计——一个创新设计的理论与方法[J]. 上海交通大学学报, 2019, 53(7): 881-883. |
ZENG Yong, ZHANG Zhinan. Environment-based design (EBD): A methodology for innovative and creative design[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7): 881-883. | |
[17] |
BEN MOUSSA F Z, RASOVSKA I, DUBOIS S, et al. Reviewing the use of the theory of inventive pro-blem solving (TRIZ) in green supply chain problems[J]. Journal of Cleaner Production, 2017, 142: 2677-2692.
doi: 10.1016/j.jclepro.2016.11.008 URL |
[18] |
DA SILVA R H, KAMINSKI P C, ARMELLINI F. Improving new product development innovation effectiveness by using problem solving tools during the conceptual development phase: Integrating Design Thinking and TRIZ[J]. Creativity and Innovation Management, 2020, 29(4): 685-700.
doi: 10.1111/caim.12399 URL |
[19] |
LIU Z F, FENG J, WANG J F. Resource-constrained innovation method for sustainability: Application of morphological analysis and TRIZ inventive principles[J]. Sustainability, 2020, 12(3): 917.
doi: 10.3390/su12030917 URL |
[20] |
SHARAF H K, ISHAK M R, SAPUAN S M, et al. Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ-morphologi-cal chart-ANP methods[J]. Journal of Materials Research and Technology, 2020, 9(4): 9182-9188.
doi: 10.1016/j.jmrt.2020.05.129 URL |
[21] |
UZOKA C, MISHRA R. Integration of TRIZ and CFD to new product development process[J]. International Journal of Computational Fluid Dynamics, 2020, 34(6): 418-437.
doi: 10.1080/10618562.2020.1789604 URL |
[22] |
VIDAL R, SALMERON J L, MENA A, et al. Fuzzy Cognitive Map-based selection of TRIZ (Theory of Inventive Problem Solving) trends for eco-innovation of ceramic industry products[J]. Journal of Cleaner Production, 2015, 107: 202-214.
doi: 10.1016/j.jclepro.2015.04.131 URL |
[23] |
JIA W J. Research and application of mechanical product design process based on QFD and TRIZ integration[J]. Journal of Physics: Conference Series, 2020, 1544: 012088.
doi: 10.1088/1742-6596/1544/1/012088 URL |
[24] |
WU Y L, ZHOU F, KONG J Z. Innovative design approach for product design based on TRIZ, AD, fuzzy and Grey relational analysis[J]. Computers & Industrial Engineering, 2020, 140: 106276.
doi: 10.1016/j.cie.2020.106276 URL |
[1] | 曾勇, 张执南. 面向环境的设计——一个创新设计的理论与方法[J]. 上海交通大学学报, 2019, 53(7): 881-883. |
[2] | 钟文军, 方伟, 顾永维. 文昌10-3项目水下脐带缆终端设计中的难点与解决方案[J]. 海洋工程装备与技术, 2018, 5(2): 143-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||