上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 413-421.doi: 10.16183/j.cnki.jsjtu.2021.345
所属专题: 《上海交通大学学报》“新型电力系统与综合能源”专题(2022年1~6月)
徐宏东1, 高海波1(), 徐晓滨2, 林治国1, 盛晨兴1
收稿日期:
2021-09-13
出版日期:
2022-04-28
发布日期:
2022-05-07
通讯作者:
高海波
E-mail:hbgao_whut@126.com
作者简介:
徐宏东(1995-),男,山东省日照市人,硕士生,从事船舶电力推进健康状态管理研究.
基金资助:
XU Hongdong1, GAO Haibo1(), XU Xiaobin2, LIN Zhiguo1, SHENG Chenxing1
Received:
2021-09-13
Online:
2022-04-28
Published:
2022-05-07
Contact:
GAO Haibo
E-mail:hbgao_whut@126.com
摘要:
锂离子电池健康状态(SOH)的准确性影响电池的安全性和使用寿命.针对锂离子电池SOH估算问题,提出一种基于证据推理(ER)规则的布谷鸟搜索支持向量回归(CS-SVR)的SOH估算模型,并利用NASA Ames研究中心的锂离子电池数据集进行SOH估算试验.该方法以电池放电循环的平均放电电压和平均放电温度为模型输入,利用ER规则进行推理,得到输入数据的融合信度矩阵.将该矩阵输入CS算法优化的SVR模型得到电池SOH估算结果.结果表明,与5种估算效果较好的现有模型相比,基于ER规则的CS-SVR模型具有更良好的估算性能.
中图分类号:
徐宏东, 高海波, 徐晓滨, 林治国, 盛晨兴. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421.
XU Hongdong, GAO Haibo, XU Xiaobin, LIN Zhiguo, SHENG Chenxing. State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421.
[1] |
MISYRIS G S, MARINOPOULOS A, DOUKAS D I, et al. On battery state estimation algorithms for electric ship applications[J]. Electric Power Systems Research, 2017, 151: 115-124.
doi: 10.1016/j.epsr.2017.05.009 URL |
[2] | XU D P, WANG L F, YANG J. Research on Li-ion battery management system [C]//2010 International Conference on Electrical and Control Engineering. Wuhan, China: IEEE, 2010: 4106-4109. |
[3] | MA G J, YU C H, HE Z W, et al. Estimation of Li-ion battery SOH using Fletcher-Reeves based ANFIS [C]//2015 IEEE 24th International Symposium on Industrial Electronics. Buzios, Brazil: IEEE, 2015: 827-830. |
[4] | LOTFI N, LI J, LANDERS R G, et al. Li-ion battery state of health estimation based on an improved single particle model [C]//2017 American Control Conference. Seattle, USA: IEEE, 2017: 86-91. |
[5] |
BERECIBAR M, GANDIAGA I, VILLARREAL I, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 572-587.
doi: 10.1016/j.rser.2015.11.042 URL |
[6] | 张新锋, 饶勇翔, 姚蒙蒙. 基于支持向量回归的锂电池健康状态估计[J]. 中北大学学报(自然科学版), 2019, 40(6): 511-516. |
ZHANG Xinfeng, RAO Yongxiang, YAO Mengmeng. Estimation of lithium battery state of health based on support vector regression[J]. Journal of North University of China (Natural Science Edition), 2019, 40(6): 511-516. | |
[7] |
QU J T, LIU F, MA Y X, et al. A neural-network-based method for RUL prediction and SOH moni-toring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178-87191.
doi: 10.1109/ACCESS.2019.2925468 URL |
[8] |
YANG D, WANG Y J, PAN R, et al. State-of-health estimation for the lithium-ion battery based on support vector regression[J]. Applied Energy, 2018, 227: 273-283.
doi: 10.1016/j.apenergy.2017.08.096 URL |
[9] |
ZENG M M, ZHANG P, YANG Y, et al. SOC and SOH joint estimation of the power batteries based on fuzzy unscented Kalman filtering algorithm[J]. Energies, 2019, 12(16): 3122.
doi: 10.3390/en12163122 URL |
[10] |
CHANG C, WANG Q Y, JIANG J C, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage, 2021, 38: 102570.
doi: 10.1016/j.est.2021.102570 URL |
[11] |
CHENG G, WANG X Z, HE Y R. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network[J]. Energy, 2021, 232: 121022.
doi: 10.1016/j.energy.2021.121022 URL |
[12] |
WENG C H, SUN J, PENG H E. Model parametrization and adaptation based on the invariance of support vectors with applications to battery state-of-health monitoring[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 3908-3917.
doi: 10.1109/TVT.2014.2364554 URL |
[13] | 刘皓, 胡明昕, 朱一亨, 等. 基于遗传算法和支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报, 2018, 42(3): 329-334. |
LIU Hao, HU Mingxin, ZHU Yiheng, et al. Prediction for state of health of lithium-ion batteries by genetic algorithm and support vector regression[J]. Journal of Nanjing University of Science and Technology, 2018, 42(3): 329-334. | |
[14] |
NG S S Y, XING Y J, TSUI K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery[J]. Applied Energy, 2014, 118: 114-123.
doi: 10.1016/j.apenergy.2013.12.020 URL |
[15] |
WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643.
doi: 10.1109/TIE.2017.2782224 URL |
[16] | XU X B, JIN Z, YANG J B, et al. Track irregularity fault identification based on evidence reasoning rule [C]//2016 IEEE International Conference on Intelligent Rail Transportation. Birmingham, UK: IEEE, 2016: 298-306. |
[17] | XU X B, ZHANG Z, ZHENG J, et al. State estimation method based on evidential reasoning rule [C]//2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference. Chongqing, China: IEEE, 2015: 610-617. |
[18] |
GAO H B, LIAO L H, HE Y L, et al. Improved control of propeller ventilation using an evidence reasoning rule based Adaboost.M1 approach[J]. Ocean Engineering, 2020, 209: 107329.
doi: 10.1016/j.oceaneng.2020.107329 URL |
[19] |
GHAZVINIAN H, MOUSAVI S F, KARAMI H, et al. Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction[J]. PLoS One, 2019, 14(5): e0217634.
doi: 10.1371/journal.pone.0217634 URL |
[20] |
YANG Y F, ZHANG M H, DAI Y W. A Fuzzy Comprehensive CS-SVR Model-based health status evaluation of radar[J]. PLoS One, 2019, 14(3): e0213833.
doi: 10.1371/journal.pone.0213833 URL |
[21] |
NI K S, NGUYEN T Q. Image superresolution using support vector regression[J]. IEEE Transactions on Image Processing, 2007, 16(6): 1596-1610.
doi: 10.1109/TIP.2007.896644 URL |
[22] |
YANG X S, DEB S. Multiobjective cuckoo search for design optimization[J]. Computers & Operations Research, 2013, 40(6): 1616-1624.
doi: 10.1016/j.cor.2011.09.026 URL |
[23] |
NARTU T R, MATTA M S, KORATANA S, et al. A fuzzified Pareto multiobjective cuckoo search algorithm for power losses minimization incorporating SVC[J]. Soft Computing, 2019, 23(21): 10811-10820.
doi: 10.1007/s00500-018-3634-7 URL |
[24] |
CHENG J T, WANG L, XIONG Y. Ensemble of cuckoo search variants[J]. Computers & Industrial Engineering, 2019, 135: 299-313.
doi: 10.1016/j.cie.2019.06.015 URL |
[25] | SAHA B, GOEBEL K. Battery data set[R]. California: NASA Ames Prognostics Data Repository, 2007. |
[26] |
QIN T C, ZENG S K, GUO J B. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model[J]. Microelectronics Reliability, 2015, 55(9/10): 1280-1284.
doi: 10.1016/j.microrel.2015.06.133 URL |
[27] | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in Python[J]. Journal of machine Learning Research, 2011, 12: 2825-2830. |
[28] |
ZHAO F J, ZHOU Z J, HU C H, et al. A new safety assessment method based on evidential reasoning rule with a prewarning function[J]. IEEE Access, 2018, 6: 31862-31871.
doi: 10.1109/ACCESS.2018.2815631 URL |
[29] | LIAO L H, GAO H B, HE Y L, et al. Fault diagnosis of capacitance aging in DC link capacitors of voltage source inverters using evidence reasoning rule[J]. Mathematical Problems in Engineering, 2020, 2020: 1-12. |
[1] | 朱城昊, 王晗, 孙国歧, 魏晓宾, 王富文, 蔡旭. 一种并网逆变器直流电容容值辨识方法[J]. 上海交通大学学报, 2022, 56(6): 693-700. |
[2] | 卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352. |
[3] | 姜余, 陈自强. 可变环境温度下锂离子电池平均温度估计[J]. 上海交通大学学报, 2021, 55(7): 781-790. |
[4] | 刘健,陈自强,黄德扬,郑昌文,周诗尧,姜余. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065. |
[5] | 周诗尧, 陈自强, 郑昌文, 黄德扬, 刘健, 葛云龙. 全海深深潜器所用动力锂离子电池电气特性[J]. 上海交通大学学报, 2019, 53(1): 49-54. |
[6] | 王宏健,徐金龙,刘向波,李娟,张爱华. 基于支持向量回归机的自适应差分滤波算法研究[J]. 上海交通大学学报(自然版), 2014, 48(07): 929-935. |
[7] | 王晓龙,蔡琦,陈玉清. 基于多参数耦合的船舶核动力装置参数重构[J]. 上海交通大学学报(自然版), 2014, 48(02): 210-213. |
[8] | 任会峰, 阳春华, 周璇, 桂卫华, 鄢锋. 基于最小二乘支持向量回归机的矿浆酸碱度鲁棒软测量[J]. 上海交通大学学报(自然版), 2011, 45(08): 1136-1139. |
[9] | 张宏伟, 宋执环. 基于彩色图像特征的铜成分软测量模型[J]. 上海交通大学学报(自然版), 2011, 45(08): 1211-1215. |
[10] | 胡友涛, 胡昌华. 一种基于遗传算法优化小波支持向量回归机的实时寿命预测方法[J]. 上海交通大学学报(自然版), 2011, 45(08): 1216-1220. |
[11] | 张心光, 邹早建. 基于支持向量回归机的船舶操纵响应模型辨识[J]. 上海交通大学学报(自然版), 2011, 45(04): 501-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||