上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (10): 1285-1293.doi: 10.16183/j.cnki.jsjtu.2022.134
• 新型电力系统与综合能源 • 下一篇
收稿日期:
2020-06-30
出版日期:
2022-10-28
发布日期:
2022-11-03
作者简介:
沈阳武(1985-),男,湖北省咸宁市人,高级工程师,从事新能源并网控制、电力系统稳定分析研究.E-mail: SHEN Yangwu1(), SONG Xingrong1, LUO Ziren2, SHEN Feifan2, HUANG Sheng2
Received:
2020-06-30
Online:
2022-10-28
Published:
2022-11-03
摘要:
分布式储能型(DES)风力发电机组是解决规模化风力发电接入引起系统频率稳定问题的有效手段.提出一种基于模型预测控制(MPC)的分布式储能型风力发电场惯性控制方法,首先建立分布式储能型风力发电场的线性化预测模型,在此基础上结合MPC控制框架,设计考虑储能损耗成本和风机转子转速均衡变化的MPC惯性控制优化模型和策略,以实现惯量控制期间风力发电机组转子转速的均衡变化.仿真结果表明:所提控制策略可以有效协调分布式储能型风力发电机组中风力发电单元和储能系统单元的有功功率输出,降低储能系统的充放电损耗成本,并保证风力发电场内所有风机转速在惯性控制期间趋于平均,避免由于风机转速下降过度而导致风力发电机组退出调频的问题.分布式储能型风力发电场惯性控制策略有利于提高电网频率稳定性,对保障电网的安全运行具有重要意义.
中图分类号:
沈阳武, 宋兴荣, 罗紫韧, 沈非凡, 黄晟. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293.
SHEN Yangwu, SONG Xingrong, LUO Ziren, SHEN Feifan, HUANG Sheng. Inertial Control Strategy for Wind Farm with Distributed Energy Storage System Based on Model Predictive Control[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1285-1293.
[1] |
MORREN J, PIERIK J, DE HAAN S W H. Inertial response of variable speed wind turbines[J]. Electric Power Systems Research, 2006, 76(11): 980-987.
doi: 10.1016/j.epsr.2005.12.002 URL |
[2] | 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34(25): 4304-4314. |
TANG Xisheng, MIAO Fufeng, QI Zhiping, et al. Survey on frequency control of wind power[J]. Proceedings of the CSEE, 2014, 34(25): 4304-4314. | |
[3] | REZA M. Power electronic interfaced DG units: Impact of control strategy on power system transient stability[C]//3rd IEE International Conference on Reliability of Transmission and Distribution Networks. London, UK: IEE, 2005: 179-182. |
[4] | 付媛, 王毅, 张祥宇, 等. 基于多端直流联网的风电功率协调控制[J]. 高电压技术, 2014, 40(2): 611-619. |
FU Yuan, WANG Yi, ZHANG Xiangyu, et al. Coordinated control of wind power in multi-terminal DC transmission system[J]. High Voltage Engineering, 2014, 40(2): 611-619. | |
[5] |
LIU F, LIU Z W, MEI S W, et al. ESO-based inertia emulation and rotor speed recovery control for DFIGs[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1209-1219.
doi: 10.1109/TEC.2017.2698212 URL |
[6] | WANG D X, GAO X D, MENG K, et al. Utilisation of kinetic energy from wind turbine for grid connections: A review paper[J]. IET Renewable Power Ge-neration, 2018, 12(6): 615-624. |
[7] | 苗福丰, 唐西胜, 齐智平. 风储联合调频下的电力系统频率特性分析[J]. 高电压技术, 2015, 41(7): 2209-2216. |
MIAO Fufeng, TANG Xisheng, QI Zhiping. Analysis of frequency characteristics of power system based on wind farm-energy storage combined frequency re-gulation[J]. High Voltage Engineering, 2015, 41(7): 2209-2216. | |
[8] |
BAO W Y, WU Q W, DING L, et al. Synthetic inertial control of wind farm with BESS based on model predictive control[J]. IET Renewable Power Generation, 2020, 14(13): 2447-2455.
doi: 10.1049/iet-rpg.2019.0885 URL |
[9] |
FANG J Y, ZHANG R Q, LI H C, et al. Frequency derivative-based inertia enhancement by grid-connected power converters with a frequency-locked-loop[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 4918-4927.
doi: 10.1109/TSG.2018.2871085 URL |
[10] | 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略[J]. 中国电机工程学报, 2015, 35(7): 1596-1605. |
LIU Ju, YAO Wei, WEN Jinyu, et al. A wind farm virtual inertia compensation strategy based on energy storage system[J]. Proceedings of the CSEE, 2015, 35(7): 1596-1605. | |
[11] |
WU Z P, GAO D W, ZHANG H G, et al. Coordinated control strategy of battery energy storage system and PMSG-WTG to enhance system frequency regulation capability[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1330-1343.
doi: 10.1109/TSTE.2017.2679716 URL |
[12] |
JIANG Q Y, GONG Y Z, WANG H J. A battery energy storage system dual-layer control strategy for mitigating wind farm fluctuations[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3263-3273.
doi: 10.1109/TPWRS.2013.2244925 URL |
[13] |
ZHAO H R, WU Q W, GUO Q L, et al. Optimal active power control of a wind farm equipped with energy storage system based on distributed model predictive control[J]. IET Generation, Transmission & Distribution, 2016, 10(3): 669-677.
doi: 10.1049/iet-gtd.2015.0112 URL |
[14] | 付红军, 陈惠粉, 赵华, 等. 高渗透率下风电的调频技术研究综述[J]. 中国电力, 2021, 54(1): 104-115. |
FU Hongjun, CHEN Huifen, ZHAO Hua, et al. Review on frequency regulation technology with high wind power penetration[J]. Electric Power, 2021, 54(1): 104-115. | |
[15] |
ZHAO H R, WU Q W, GUO Q L, et al. Distributed model predictive control of a wind farm for optimal active power control—Part I: Clustering-based wind turbine model linearization[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 831-839.
doi: 10.1109/TSTE.2015.2418282 URL |
[16] |
GUO Y F, GAO H L, WU Q W, et al. Enhanced voltage control of VSC-HVDC-connected offshore wind farms based on model predictive control[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 474-487.
doi: 10.1109/TSTE.2017.2743005 URL |
[17] | 刘淼. 参与电网调频的风电场有功功率控制方法研究[D]. 成都: 电子科技大学, 2018. |
LIU Miao. Wind farm active power control method in power system frequency regulation[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
[18] |
WANG S Q, TOMSOVIC K. A novel active power control framework for wind turbine generators to improve frequency response[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6579-6589.
doi: 10.1109/TPWRS.2018.2829748 URL |
[19] |
HUANG S, WU Q W, GUO Y F, et al. Hierarchical active power control of DFIG-based wind farm with distributed energy storage systems based on ADMM[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1528-1538.
doi: 10.1109/TSTE.2019.2929820 URL |
[20] |
HUANG S, WU Q W, GUO Y F, et al. Bi-level decentralised active power control for large-scale wind farm cluster[J]. IET Renewable Power Generation, 2018, 12(13): 1486-1492.
doi: 10.1049/iet-rpg.2017.0871 URL |
[21] | ANDERSON P M, BOSE A. Stability simulation of wind turbine systems[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(12): 3791-3795. |
[1] | 姜俊豪, 陈刚. 驾驶机器人转向操纵的动态模型预测控制方法[J]. 上海交通大学学报, 2022, 56(5): 594-603. |
[2] | 叶鹏, 刘思奇, 关多娇, 姜竹楠, 孙峰, 顾海飞. 基于自适应均衡技术的分布式储能聚合模型及评估方法[J]. 上海交通大学学报, 2021, 55(12): 1689-1699. |
[3] | 李彪, 王立文, 邢志伟, 王思博, 罗谦. 飞机地面除冰资源协同控制[J]. 上海交通大学学报, 2021, 55(11): 1362-1370. |
[4] | 何德峰, 彭彬彬, 顾煜佳, 余世明. 基于高斯过程回归的车辆巡航系统学习预测控制[J]. 上海交通大学学报, 2020, 54(9): 904-909. |
[5] | 王琳,邹媛媛,李少远. 基于性能触发的双层结构模型预测控制[J]. 上海交通大学学报(自然版), 2018, 52(10): 1324-1332. |
[6] | 王玄,陶建峰,张峰榕,吴亚瑾,刘成良. 基于预测控制的单向比例泵控非对称液压缸系统控制方法[J]. 上海交通大学学报(自然版), 2016, 50(05): 696-701. |
[7] | 罗莉华. 基于MPC的车道保持系统转向控制策略[J]. 上海交通大学学报(自然版), 2014, 48(07): 1015-1020. |
[8] | 鲍荣, 何德峰, 郑凯华. 基于黄金分割法的阶梯式约束预测控制[J]. 上海交通大学学报(自然版), 2012, 46(12): 1940-1944. |
[9] | 李刚1, 2, 宗长富1, 张泽星1, 段明序1, 梁赫奇3, 洪伟1. 车辆底盘集成控制研究[J]. 上海交通大学学报(自然版), 2012, 46(08): 1291-1296. |
[10] | 黄昆, 喻凡, 张勇超. 基于能量流动分析的电磁式馈能型主动悬架控制[J]. 上海交通大学学报(自然版), 2011, 45(07): 1068-1073. |
[11] | 黄昆,喻凡,张勇超. 电磁式主动悬架模型预测控制器设计 [J]. 上海交通大学学报(自然版), 2010, 44(11): 1619-1624. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||