[1] |
BURR G W, BREITWISCH M J, FRANCESCHINI M, et al. Phase change memory technology[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(2):223-262.
|
[2] |
WONG H S P, RAOUX S, KIM S, et al. Phase change memory[J]. Proceedings of the IEEE, 2010, 98(12):2201-2227.
doi: 10.1109/JPROC.2010.2070050
URL
|
[3] |
OVSHINSKY S R. Reversible electrical switching phenomena in disordered structures[J]. Physical Review Letters, 1968, 21(20):1450-1453.
doi: 10.1103/PhysRevLett.21.1450
URL
|
[4] |
BURR G W, SHELBY R M, SEBASTIAN A, et al. Neuromorphic computing using non-volatile memory[J]. Advances in Physics: X, 2017, 2(1):89-124.
doi: 10.1080/23746149.2016.1259585
URL
|
[5] |
TUMA T, PANTAZI A, LE GALLO M, et al. Stochastic phase-change neurons[J]. Nature Nanotechnology, 2016, 11(8):693-699.
doi: 10.1038/nnano.2016.70
URL
|
[6] |
GAO D, LIU B, XU Z, et al. Failure analysis of nitrogen-doped Ge2Sb2Te5 phase change memory[J]. IEEE Transactions on Device and Materials Reliability, 2016, 16(1):74-79.
doi: 10.1109/TDMR.2016.2520984
URL
|
[7] |
LU Y Y, CAI D L, CHEN Y F, et al. The impact of the electrode performance on the endurance properties of the phase change memory device[J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(1):164-168.
doi: 10.1109/TDMR.7298
URL
|
[8] |
RAO F, DING K Y, ZHOU Y X, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing[J]. Science, 2017, 358(6369):1423-1427.
doi: 10.1126/science.aao3212
URL
|
[9] |
ZHU M, WU L C, RAO F, et al. The micro-structure and composition evolution of Ti-Sb-Te alloy during reversible phase transition in phase change memory[J]. Applied Physics Letters, 2014, 104(6):063105.
doi: 10.1063/1.4828560
URL
|
[10] |
KIM W, BRIGHTSKY M, MASUDA T, et al. ALD-based confined PCM with a metallic liner toward unlimited endurance[C]// 2016 IEEE International Electron Devices Meeting. Piscataway, NJ, USA: IEEE, 2016: 83-86.
|
[11] |
TOM T. SNIA NVM programming model V1.2 and beyond [EB/OL].(2017-9-12) [2019-6-12]. https://www.snia.org/educational-library/nvm-programming-model-v-12-and-beyond-2017.
|
[12] |
SONG Z T, CAI D L, LI X, et al. High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application[C]// 2018 IEEE International Electron Devices Meeting. Piscataway, NJ, USA: IEEE, 2018: 620-623.
|
[13] |
NAM S W, KIM C, KWON M H, et al. Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing[J]. Applied Physics Letters, 2008, 92(11):111913.
doi: 10.1063/1.2899967
URL
|
[14] |
NAM S W, LEE D, KWON M H, et al. Electric-field-induced mass movement of Ge2Sb2Te5 in bottleneck geometry line structures[J]. Electrochemical and Solid-State Letters, 2009, 12(4):H155.
doi: 10.1149/1.3079480
URL
|
[15] |
DEBUNNE A, VIRWANI K, PADILLA A, et al. Evidence of crystallization-induced segregation in the phase change material Te-rich GST[J]. Journal of the Electrochemical Society, 2011, 158(10):965-972.
|
[16] |
WU L, CAI D L, CHEN Y F, et al. Endurance improvement of phase change memory based on high and narrow RESET currents[J]. ECS Journal of Solid State Science and Technology, 2020, 9(3):035004.
doi: 10.1149/2162-8777/ab7883
URL
|