上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (8): 976-983.doi: 10.16183/j.cnki.jsjtu.2020.211

所属专题: 《上海交通大学学报》2021年“交通运输工程”专题 《上海交通大学学报》2021年12期专题汇总专辑

• • 上一篇    下一篇

非均匀流场螺旋桨空泡数值模拟

刘恒1,2(), 伍锐1,2,3, 孙硕1,2   

  1. 1.上海船舶运输科学研究所 航运技术与安全国家重点实验室,上海 200135
    2.上海船舶运输科学研究所 航运技术交通行业重点实验室,上海 200135
    3.浙江大学 能源工程学院化工机械研究所,杭州 310027
  • 收稿日期:2020-07-06 出版日期:2021-08-28 发布日期:2021-08-31
  • 作者简介:刘 恒(1990-),男,河南省开封市人,助理研究员,主要从事船舶螺旋桨空泡的试验和数值研究. 电话(Tel.):021-58856638-2532;E-mail: liu.heng@coscoshipping.com.

Numerical Simulation of Propeller Cavitation in Non-Uniform Flow

LIU Heng1,2(), WU Rui1,2,3, SUN Shuo1,2   

  1. 1. State Key Laboratory of Navigation and Safety Technology, Shanghai Ship and Shipping Research Institute, Shanghai 200135, China
    2. Key Laboratory of Marine Technology Ministry of Communications, Shanghai Ship and Shipping Research Institute, Shanghai 200135, China
    3. Institute of Chemical Machinery, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2020-07-06 Online:2021-08-28 Published:2021-08-31

摘要:

以某油船螺旋桨为研究对象,基于Rayleigh-Plesset方程,采用Schnerr-Sauer 空化模型和可实现的k-ε两层湍流模型,利用计算流体力学(CFD)软件STAR-CCM+模拟了非均匀来流条件下螺旋桨的空泡形态.通过对螺旋桨叶梢区域进行有效合理的网格加密,以较少的网格数量成功捕获梢涡空泡.数值计算与试验结果对比表明:计算结果准确再现了桨叶进出伴流区域空泡初生、发展和溃灭的整个历程;每个相位角叶背片空泡形态与试验观察吻合,片空泡面积相差在5%以内;该数值方法虽然能够捕捉到梢涡空泡,但是还不能对梢涡空泡的非定常特性和空间结构进行准确预测.基于上述结果,该方法适用于非均匀流螺旋桨空泡流动模拟.

关键词: 数值模拟, 非均匀流, 空泡, 螺旋桨

Abstract:

Taking a certain oil tanker propeller as the research object, and using Schnerr-Sauer cavitation model based on Rayleigh-Plesset equation and the realizable k-ε two-layer turbulence model, the cavitation pattern around the propeller in non-uniform flow conditions is simulated by using the computational fluid dynamics (CFD) software STAR-CCM+. Through effective and reasonable mesh densification of the propeller blade tip area, the tip vortex cavitation is successfully captured with a small number of meshes. The comparison between numerical calculation and test results shows that the whole process of cavitation inception, development, and collapse in wake flow can be accurately reproduced. The back-sheet cavitation pattern at each phase angle is in good agreement with the test results and the difference of cavitation area between calculation and the experiment is within 5%. Although the numerical method can capture the tip vortex cavitation, it cannot accurately predict the unsteady characteristics and spatial structure of the tip vortex cavitation. Based on the above results, it can be concluded this numerical methodology is suitable for simulating cavitation flows around propeller in non-uniform flow.

Key words: numerical simulation, non-uniform flow, cavitation, propeller

中图分类号: