[1] |
XIAO Z, HEZHEN Y. Probability analysis for ship parametric rolling in irregular waves[J]. Chinese Journal of Ship Research, 2015(3):32-36.
|
[2] |
FU C, MA S, DUAN W, et al. Sensitivity factors in parametric rolling of containership C11 and improvement measure[J]. Shipbuilding of China, 2015 (Sup.1):72-80.
|
[3] |
ZHOU Y H, MA N, LU J, et al. A study of hybrid prediction method for ship parametric rolling[J]. Journal of Hydrodynamics, Ser B, 2016, 28(4):617-628.
|
[4] |
MOHAMAD M A, SAPSIS T P. Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitation[J]. Ocean Engineering, 2016, 120:289-297.
doi: 10.1016/j.oceaneng.2016.03.008
URL
|
[5] |
LIU L Q, LIU Y L, XU W H, et al. A semi-analy-tical method for the PDFs of a ship rolling in random oblique waves[J]. China Ocean Engineering, 2018, 32(1):74-84.
doi: 10.1007/s13344-018-0008-y
URL
|
[6] |
KIDO K. Hilbert transform[M]. New York, NY: Springer New York, 2014: 105-130.
|
[7] |
DOSTAL L, KREUZER E. Numerical computation of parametric induced roll motions in random seas[J]. PAMM, 2009, 9(1):555-556.
doi: 10.1002/pamm.200910250
URL
|
[8] |
DOSTAL L, KREUZER E, NAMACHCHIVAYA N S. Stochastic averaging of roll-pitch and roll-heave motion in random seas[J]. Procedia IUTAM, 2013, 6:132-140.
doi: 10.1016/j.piutam.2013.01.015
URL
|
[9] |
LU J, UMEDA N, MA K. Predicting parametric rolling in irregular head seas with added resistance taken into account[J]. Journal of Marine Science and Technology, 2011, 16(4):462-471.
doi: 10.1007/s00773-011-0141-2
URL
|
[10] |
WINTERSTEIN S R. Non-normal responses and fatigue damage[J]. Journal of Engineering Mechanics, 1985, 111(10):1291-1295.
doi: 10.1061/(ASCE)0733-9399(1985)111:10(1291)
URL
|
[11] |
XIAO L, LU H, LI X, et al. Probability analysis of wave run-ups and air gap response of a deepwater semisubmersible platform using LH-moments estimation method[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(2):04015019.
doi: 10.1061/(ASCE)WW.1943-5460.0000325
URL
|
[12] |
高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计: 复合Hermite模型[J]. 工程力学, 2019, 36(1):23-31.
|
|
GAO Shan, ZHENG Xiangyuan, HUANG Yi. Hybrid hermite models for short term extrema estimation of non-Gaussian processes[J]. Engineering Mechanics, 2019, 36(1):23-31.
|
[13] |
田玉基, 杨庆山. 非高斯风压时程极大值因子的简化计算式[J]. 建筑结构学报, 2015, 36(3):20-28.
|
|
TIAN Yuji, YANG Qingshan. Reduced formula of peak factor for non-Gaussian wind pressure history[J]. Journal of Building Structures, 2015, 36(3):20-28.
|
[14] |
CARTWRIGHT D E. The statistical distribution of the maxima of a random function[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1956, 237(1209):212-232.
|
[15] |
王勃, 董元正, 董丽欣. 基于短期风速资料的基本风压计算方法[J]. 吉林大学学报(工学版), 2020, 50(5):1739-1746.
|
|
WANG Bo, DONG Yuanzheng, DONG Lixin. Calculation of basic wind pressure based on short-term wind speed data[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5):1739-1746.
|
[16] |
NAESS A. The effect of the Markov chain condition on the prediction of extreme values[J]. Journal of Sound and Vibration, 1984, 94(1):87-103.
doi: 10.1016/S0022-460X(84)80007-3
URL
|