上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (8): 924-933.doi: 10.16183/j.cnki.jsjtu.2019.266
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“工程力学”专题
收稿日期:
2019-09-19
出版日期:
2021-08-28
发布日期:
2021-08-31
通讯作者:
虞培祥
E-mail:pxyu@sjtu.edu.cn
作者简介:
郭志远(1992-),男,河南省安阳市人,硕士生,主要研究方向为航空发动机压气机流动和计算流体力学
基金资助:
GUO Zhiyuana, YU Peixianga,b(), OUYANG Huaa,b
Received:
2019-09-19
Online:
2021-08-28
Published:
2021-08-31
Contact:
YU Peixiang
E-mail:pxyu@sjtu.edu.cn
摘要:
圆柱绕流是一种常见的流体力学研究对象,随着雷诺数(Re)增加,其下游尾迹剪切层中会产生开尔文-亥姆霍兹不稳定性现象.利用大涡模拟方法,数值求解中等Re(Re=2000, 3900, 5000)的圆柱绕流问题,可得圆柱下游的精细化流场,继而开展对剪切层不稳定性的深入研究.为获得剪切层不稳定性的特征频率,分别采用传统的监测点分析与局部流场的动态模态分解方法进行计算.结果显示,两种方法得到的频率基本一致.不过,相比传统方法,动态模态分解方法一方面能克服人为选择监测点带来的随机误差,较便捷地给出剪切层不稳定性特征频率,另一方面还能进一步通过不同流场模态分析出不同Re对剪切层不稳定性特性的影响.
中图分类号:
郭志远, 虞培祥, 欧阳华. 基于大涡模拟的圆柱绕流剪切层不稳定性[J]. 上海交通大学学报, 2021, 55(8): 924-933.
GUO Zhiyuan, YU Peixiang, OUYANG Hua. Shear Layer Instability of Flow Around a Circular Cylinder Based on Large Eddy Simulation[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 924-933.
[1] | 胡如云, 王亮, 符松. 后台阶流动及其控制述评[J]. 中国科学: 物理学力学天文学, 2015, 45(12):124704. |
HU Ruyun, WANG Liang, FU Song. Review of backward-facing step flow and separation reduction[J]. Sci Sin-Phys Mech Astron, 2015, 45(12):124704.
doi: 10.1360/SSPMA2015-00450 URL |
|
[2] | 艾国远, 叶建. 低雷诺数下翼型不同分离流态的大涡模拟[J]. 空气动力学学报, 2017, 35(2):299-304. |
AI Guoyuan, YE Jian. Large eddy simulation of different flow separation patterns of airfoil at low Reynolds number[J]. Acta Aerodynamica Sinica, 2017, 35(2):299-304. | |
[3] | 姚丹, 田杰, 欧阳华, 等. 压气机旋转不稳定性的周向模态特性及其分解方法[J]. 航空动力学报, 2018, 33(2):431-439. |
YAO Dan, TIAN Jie, OUYANG Hua, et al. Circumferential mode characteristic of rotating instability and its decomposition method of compressor[J]. Journal of Aerospace Power, 2018, 33(2):431-439. | |
[4] |
LEHMKUHL O, RODRÍGUEZ I, BORRELL R, et al. Low-frequency unsteadiness in the vortex formation region of a circular cylinder[J]. Physics of Fluids, 2013, 25(8):085109.
doi: 10.1063/1.4818641 URL |
[5] |
PRASAD A, WILLIAMSON C H K. The instability of the shear layer separating from a bluff body[J]. Journal of Fluid Mechanics, 1997, 333:375-402.
doi: 10.1017/S0022112096004326 URL |
[6] |
DONG S, KARNIADAKIS G E, EKMEKCI A, et al. A combined direct numerical simulation—Particle image velocimetry study of the turbulent near wake[J]. Journal of Fluid Mechanics, 2006, 569:185-207.
doi: 10.1017/S0022112006002606 URL |
[7] |
ALJURE D E, LEHMKHUL O, RODRÍGUEZ I, et al. Three dimensionality in the wake of the flow around a circular cylinder at Reynolds number 5000[J]. Computers & Fluids, 2017, 147:102-118.
doi: 10.1016/j.compfluid.2017.02.004 URL |
[8] |
LYSENKO D A, ERTESVAG I S, RIAN K E. Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox[J]. Flow, Turbulence and Combustion, 2012, 89(4):491-518.
doi: 10.1007/s10494-012-9405-0 URL |
[9] |
TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: An overview[J]. AIAA Journal, 2017, 55(12):4013-4041.
doi: 10.2514/1.J056060 URL |
[10] | 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2):163-179. |
KOU Jiaqing, ZHANG Weiwei. Dynamic mode decomposition and its application in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2):163-179. | |
[11] |
KOU J Q, ZHANG W W. An improved criterion to select dominant modes from dynamic mode decomposition[J]. European Journal of Mechanics—B/Fluids, 2017, 62:109-129.
doi: 10.1016/j.euromechflu.2016.11.015 URL |
[12] | HEMATI M S, WILLIAMS M O, ROWLEY C W. Dynamic mode decomposition for large and streaming datasets[J]. Physics of Fluids, 2014, 26(11):5-28. |
[13] |
ZHANG Q S, LIU Y Z, WANG S F. The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition[J]. Journal of Fluids and Structures, 2014, 49:53-72.
doi: 10.1016/j.jfluidstructs.2014.04.002 URL |
[14] |
WANG L, FENG L H. Extraction and reconstruction of individual vortex-shedding mode from bistable flow[J]. AIAA Journal, 2017, 55(7):1-13.
doi: 10.2514/1.J055815 URL |
[15] |
TISSOT G, CORDIER L, BENARD N, et al. Model reduction using dynamic mode decomposition[J]. Comptes Rendus Mécanique, 2014, 342(6/7):410-416.
doi: 10.1016/j.crme.2013.12.011 URL |
[16] |
NOACK B R, STANKIEWICZ W, MORZYNSKI M, et al. Recursive dynamic mode decomposition of transient and post-transient wake flows[J]. Journal of Fluid Mechanics, 2016, 809:843-872.
doi: 10.1017/jfm.2016.678 URL |
[17] |
NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3):183-200.
doi: 10.1023/A:1009995426001 URL |
[18] |
RODRÍGUEZ I, LEHMKUHL O, CHIVA J, et al. On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding[J]. International Journal of Heat and Fluid Flow, 2015, 55:91-103.
doi: 10.1016/j.ijheatfluidflow.2015.05.009 URL |
[19] | 端木玉, 万德成. 雷诺数为3900时三维圆柱绕流的大涡模拟[J]. 海洋工程, 2016, 34(6):11-20. |
DUANMU Yu, WAN Decheng. Large eddy simulation of the three-dimensional flow past a cylinder at Re=3900[J]. The Ocean Engineering, 2016, 34(6):11-20. | |
[20] |
LUO D, YAN C, LIU H, et al. Comparative assessment of PANS and DES for simulation of flow past a circular cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134:65-77.
doi: 10.1016/j.jweia.2014.08.014 URL |
[21] |
PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids, 2008, 20(8):085101.
doi: 10.1063/1.2957018 URL |
[22] |
RAJANI B N, KANDASAMY A, MAJUMDAR S. LES of flow past circular cylinder at Re=3900[J]. Journal of Applied Fluid Mechanics, 2016, 9(3):1421-1435.
doi: 10.18869/acadpub.jafm.68.228.24178 URL |
[23] |
MA X, KARAMANOS G S, KARNIADAKIS G E. Dynamics and low-dimensionality of a turbulent near wake[J]. Journal of Fluid Mechanics, 2000, 410:29-65.
doi: 10.1017/S0022112099007934 URL |
[24] | 叶坤, 武洁, 叶正寅, 等. 动力学模态分解和本征正交分解对圆柱绕流稳定性的分析[J]. 西北工业大学学报, 2017, 35(4):599-607. |
YE Kun, WU Jie, YE Zhengyin, et al. Analyst of stability of flow past a cylinder using dynamic mode decomposition and proper orthogonal decomposition[J]. Journal of Northwestern Polytechnical University, 2017, 35(4):599-607. |
[1] | 周希瑞, 王平, 曾海翔, 张洋, PRASHANT Shrotriya, ANTONIO Ferrante, 祁浩天. 甲烷及掺氢燃气吹熄极限的大涡模拟研究[J]. 上海交通大学学报, 2022, 56(5): 635-647. |
[2] | 徐振东, 段宇轩, 徐华松, 杨帆, 李铁. 当地DFD方法向LES湍流模拟推广的研究[J]. 空天防御, 2022, 5(3): 93-98. |
[3] | 曾海翔, 王平, SHROTRIYA Prashant, 姜霖松, MURUGESAN Meenatchidevi. 带有局部熄火现象的部分预混火焰大涡模拟研究[J]. 上海交通大学学报, 2022, 56(1): 35-44. |
[4] | 孙翀, 田甜, 竺晓程, 杜朝辉. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报, 2022, 56(1): 45-52. |
[5] | 谢海润,吴亚东,欧阳华,王安正. 基于本征正交分解和动态模态分解的尾涡激振现象瞬态过程的模态分析[J]. 上海交通大学学报, 2020, 54(2): 176-185. |
[6] | 胡晨星,丁杰,竺晓程,杜朝辉. 离心压气机蜗壳内非定常流场的动态模态分解[J]. 上海交通大学学报(自然版), 2018, 52(9): 1044-1049. |
[7] | 刘宏升1,姜霖松1,吴丹2,解茂昭1. 基于大涡模拟的三维随机球堆积床内湍流流动特性[J]. 上海交通大学学报(自然版), 2018, 52(9): 1050-1057. |
[8] | 高云1, 2,王盟浩1,宗智3,邹丽3,彭庚1. 高雷诺数时分离盘长度对圆柱绕流特性的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 504-. |
[9] | 蒋科, 张德华, 戚昱, 苏仰旋, 赵毅, 田润红. 亚临界雷诺数条件下圆柱绕流特性研究[J]. 海洋工程装备与技术, 2017, 4(1): 37-42. |
[10] | 赵骥,朱仁传,缪国平. 基于Helmholtz速度分解的黏势流耦合方法[J]. 上海交通大学学报(自然版), 2016, 50(01): 103-109. |
[11] | 尹纪富,尤云祥,李巍,胡天群. 电磁力控制圆柱体三维绕流场的脱体涡模拟[J]. 上海交通大学学报(自然版), 2014, 48(02): 244-251. |
[12] | 陈薛浩, 朱志夏. 基于Fluent的海底管线附近流场分析[J]. 上海交通大学学报(自然版), 2012, 46(03): 458-462. |
[13] | 张允, 傅慧萍, 缪国平. 基于大涡模拟的开孔潜体流噪声数值模拟[J]. 上海交通大学学报(自然版), 2011, 45(12): 1868-1873. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 842
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 981
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||