上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (7): 791-801.doi: 10.16183/j.cnki.jsjtu.2020.024
所属专题: 《上海交通大学学报》2021年“电气工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
李玲芳1, 陈占鹏2(), 胡炎2, 邰能灵2, 高孟平1, 朱涛1
收稿日期:
2020-01-17
出版日期:
2021-07-28
发布日期:
2021-07-30
通讯作者:
陈占鹏
E-mail:chenzhanpeng@sjtu.edu.cn
作者简介:
李玲芳(1974-),女,云南省昆明市人,高级工程师,主要研究方向为电网经济调度与系统分析、电力系统规划
基金资助:
LI Lingfang1, CHEN Zhanpeng2(), HU Yan2, TAI Nengling2, GAO Mengping1, ZHU Tao1
Received:
2020-01-17
Online:
2021-07-28
Published:
2021-07-30
Contact:
CHEN Zhanpeng
E-mail:chenzhanpeng@sjtu.edu.cn
摘要:
风电、光伏等可再生能源的大规模并网为电力系统的规划与运行带来极大的不确定性.为了增强高比例可再生能源电网应对不确定事件的调节能力,保障系统的安全经济运行,需要提升电力系统的灵活性.首先,从线路传输能力和安全运行的角度定义电网灵活性指标.在此基础上,考虑系统经济运行策略,以灵活性、投资成本、运行成本和可再生能源弃用量最优为目标,提出一种基于灵活性和经济性的多目标输电网双层规划模型.采用NSGAII优化算法对该模型进行求解.最后,以改进的Garver-6和IEEE RTS-24节点可靠性测试系统为例,分析所提模型的有效性.结果表明,规划方案能够有效提升电网传输能力,降低可再生能源弃用率,增强电网运行的灵活性和经济性.
中图分类号:
李玲芳, 陈占鹏, 胡炎, 邰能灵, 高孟平, 朱涛. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801.
LI Lingfang, CHEN Zhanpeng, HU Yan, TAI Nengling, GAO Mengping, ZHU Tao. Expansion Planning of Renewable Energy Power System Considering Flexibility and Economy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801.
表4
IEEE RTS-24节点系统线路数据
首末节点 | 电抗(p.u.) | 容量/MW | 线长/km | 已建数目 | 可扩建数目 | 首末节点 | 电抗(p.u.) | 容量/MW | 线长/km | 已建数目 | 可扩建数目 |
---|---|---|---|---|---|---|---|---|---|---|---|
1-2 | 0.0139 | 350 | 3 | 1 | 3 | 11-13 | 0.0476 | 1000 | 33 | 1 | 3 |
1-3 | 0.2112 | 350 | 55 | 1 | 3 | 11-14 | 0.0418 | 1000 | 29 | 1 | 3 |
1-5 | 0.0845 | 350 | 22 | 1 | 3 | 12-13 | 0.0476 | 1000 | 33 | 1 | 3 |
2-4 | 0.1267 | 350 | 33 | 1 | 3 | 12-23 | 0.0966 | 1000 | 67 | 1 | 3 |
2-6 | 0.1920 | 350 | 50 | 1 | 3 | 13-23 | 0.0865 | 1000 | 60 | 1 | 3 |
3-9 | 0.1190 | 350 | 31 | 1 | 3 | 14-16 | 0.0389 | 1000 | 27 | 1 | 4 |
3-24 | 0.0839 | 1200 | 0 | 1 | 0 | 15-16 | 0.0173 | 1000 | 12 | 1 | 3 |
4-9 | 0.1037 | 350 | 27 | 1 | 2 | 15-21 | 0.0490 | 1000 | 34 | 2 | 2 |
5-10 | 0.0883 | 350 | 23 | 1 | 2 | 15-24 | 0.0519 | 1000 | 36 | 1 | 2 |
6-10 | 0.0605 | 350 | 16 | 1 | 2 | 16-17 | 0.0259 | 1000 | 18 | 1 | 2 |
7-8 | 0.0614 | 350 | 16 | 2 | 2 | 16-19 | 0.0231 | 1000 | 16 | 1 | 2 |
8-9 | 0.1651 | 350 | 43 | 1 | 2 | 17-18 | 0.0144 | 1000 | 10 | 1 | 2 |
8-10 | 0.1651 | 350 | 43 | 1 | 2 | 17-22 | 0.1053 | 1000 | 73 | 1 | 2 |
9-11 | 0.0839 | 1200 | 0 | 1 | 0 | 18-21 | 0.0259 | 1000 | 18 | 2 | 2 |
9-12 | 0.0839 | 1200 | 0 | 1 | 0 | 19-20 | 0.0396 | 1000 | 27.5 | 2 | 2 |
10-11 | 0.0839 | 1200 | 0 | 1 | 0 | 20-23 | 0.0216 | 1000 | 15 | 2 | 2 |
10-12 | 0.0839 | 1200 | 0 | 1 | 0 | 21-22 | 0.0678 | 1000 | 47 | 1 | 2 |
表7
典型场景下IEEE RTS-24系统规划方案结果对比
方案 | 新建线路 | Ctotal× 10-8/美元 | Ccons× 10-4/美元 | Coper× 10-8/美元 | Cpenalty× 10-8/美元 | FLEXnet |
---|---|---|---|---|---|---|
A | l1-2=1, l6-10=3, l8-9=2, l11-13=1, l12-23=1 l14-16=1, l15-24=1, l16-17=2, l17-18=1, l17-22=1 | 8.314 | 1939.8 | 8.120 | 0 | 0.2894 |
B | l1-2=1, l6-10=1, l7-8=1, l11-13=1 | 11.180 | 314.8 | 11.148 | 1.044 | 0.1316 |
C | l1-2=1, l6-10=1, l8-9=1, l11-13=1, l13-23=1 l14-16=1, l16-17=2, l17-18=1, l17-22=1 | 8.291 | 1393.5 | 8.152 | 0 | 0.1842 |
[1] | 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11. |
KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11. | |
[2] | 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008. |
ZHOU Xiaoxin, LU Zongxiang, LIU Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008. | |
[3] |
YUAN X M. Overview of problems in large-scale wind integrations[J]. Journal of Modern Power Systems and Clean Energy, 2013, 1(1): 22-25.
doi: 10.1007/s40565-013-0010-6 URL |
[4] | 程浩忠, 李隽, 吴耀武, 等. 考虑高比例可再生能源的交直流输电网规划挑战与展望[J]. 电力系统自动化, 2017, 41(9): 19-27. |
CHENG Haozhong, LI Jun, WU Yaowu, et al. Challenges and prospects for AC/DC transmission expansion planning considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 19-27. | |
[5] | 肖定垚, 王承民, 曾平良, 等. 考虑可再生能源电源功率不确定性的电源灵活性评价[J]. 电力自动化设备, 2015, 35(7): 120-125. |
XIAO Dingyao, WANG Chengmin, ZENG Ping-liang, et al. Power source flexibility evaluation con-sidering renewable energy generation uncertainty[J]. Electric Power Automation Equipment, 2015, 35(7): 120-125. | |
[6] | 朱凌志, 陈宁, 韩华玲. 风电消纳关键问题及应对措施分析[J]. 电力系统自动化, 2011, 35(22): 29-34. |
ZHU Lingzhi, CHEN Ning, HAN Hualing. Key problems and solutions of wind power accommodation[J]. Automation of Electric Power Systems, 2011, 35(22): 29-34. | |
[7] | 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158. |
LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13): 147-158. | |
[8] | International Energy Agency. Harnessing variable renewables: A guide to the balancing challenge[M]. Paris: International Energy Agency, 2011: 41-67. |
[9] | INTERNITTENT N, FORCE V G T. Accommodating high levels of variable generation[R]. Atlanta, Georgia: North American Electric Reliability Corporation (NERC), 2009. |
[10] | LANNOYE E, FLYNN D, O’MALLEY M. The role of power system flexibility in generation planning [C]// Power & Energy Society General Meeting. Detroit, MI, USA: IEEE, 2011. |
[11] |
LANNOYE E, FLYNN D, O’MALLEY M. Evaluation of power system flexibility[J]. IEEE Transactions on Power Systems, 2012, 27(2): 922-931.
doi: 10.1109/TPWRS.2011.2177280 URL |
[12] |
LANNOYE E, FLYNN D, O’MALLEY M. Transmission, variable generation, and power system flexibility[J]. IEEE Transactions on Power Systems, 2015, 30(1): 57-66.
doi: 10.1109/TPWRS.2014.2321793 URL |
[13] | 李海波, 鲁宗相, 乔颖, 等. 大规模风电并网的电力系统运行灵活性评估[J]. 电网技术, 2015, 39(6): 1672-1678. |
LI Haibo, LU Zongxiang, QIAO Ying, et al. Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power System Technology, 2015, 39(6): 1672-1678. | |
[14] | 肖定垚, 王承民, 曾平良, 等. 电力系统灵活性及其评价综述[J]. 电网技术, 2014, 38(6): 1569-1576. |
XIAO Dingyao, WANG Chengmin, ZENG Ping-liang, et al. A survey on power system flexibility and its evaluations[J]. Power System Technology, 2014, 38(6): 1569-1576. | |
[15] | CAPASSO A, FALVO M C, LAMEDICA R, et al. A new methodology for power systems flexibility evaluation [C]// Power Tech, 2005 IEEE Russia. St,. Petersburg, Russia: IEEE 2005. |
[16] | BOUFFARD F, ORTEGA-VAZQUEZ M. The value of operational flexibility in power systems with signi-ficant wind power generation [C]// 2011 IEEE Power and Energy Society General Meeting. Detroit, MI, USA: IEEE, 2011. |
[17] | 王晞, 叶希, 唐权, 等. 基于广义灵活性指标体系的输电网扩展规划[J]. 电力建设, 2019, 40(3): 67-76. |
WANG Xi, YE Xi, TANG Quan, et al. Transmission network expansion planning based on generalized flexibility index system[J]. Electric Power Construction, 2019, 40(3): 67-76. | |
[18] | 梁子鹏, 陈皓勇, 郑晓东, 等. 考虑风电极限场景的输电网鲁棒扩展规划[J]. 电力系统自动化, 2019, 43(16): 58-68. |
LIANG Zipeng, CHEN Haoyong, ZHENG Xiao-dong, et al. Robust expansion planning of transmission network considering extreme scenario of wind power[J]. Automation of Electric Power Systems, 2019, 43(16): 58-68. | |
[19] |
ALISMAIL F, XIONG P, SINGH C. Optimal wind farm allocation in multi-area power systems using distributionally robust optimization approach[J]. IEEE Transactions on Power Systems, 2018, 33(1): 536-544.
doi: 10.1109/TPWRS.2017.2695002 URL |
[20] | 黄英, 刘宝柱, 王坤宇, 等. 考虑风电接纳能力的储输联合规划[J]. 电网技术, 2018, 42(5): 1480-1489. |
HUANG Ying, LIU Baozhu, WANG Kunyu, et al. Joint planning of energy storage and transmission network considering wind power accommodation capabi-lity[J]. Power System Technology, 2018, 42(5): 1480-1489. | |
[21] | 史智萍, 王智敏, 吴玮坪, 等. 基于态势感知的电网消纳可再生能源发电评估与扩展规划方法[J]. 电网技术, 2017, 41(7): 2180-2186. |
SHI Zhiping, WANG Zhimin, WU Weiping, et al. Evaluation of renewable energy integration capability and network expansion planning based on situation awareness theory[J]. Power System Technology, 2017, 41(7): 2180-2186. | |
[22] | 于晗, 钟志勇, 黄杰波, 等. 考虑负荷和风电出力不确定性的输电系统机会约束规划[J]. 电力系统自动化, 2009, 33(2): 20-24. |
YU Han, ZHONG Zhiyong, HUANG Jiebo, et al. A chance constrained transmission network expansion planning method associated with load and wind farm variations[J]. Automation of Electric Power Systems, 2009, 33(2): 20-24. | |
[23] | 刘万宇, 李华强, 张弘历, 等. 考虑灵活性供需平衡的输电网扩展规划[J]. 电力系统自动化, 2018, 42(5): 56-63. |
LIU Wanyu, LI Huaqiang, ZHANG Hongli, et al. Expansion planning of transmission grid based on coordination of flexible power supply and demand[J]. Automation of Electric Power Systems, 2018, 42(5): 56-63. | |
[24] |
CESEÑA E M, CAPUDER T, MANCARELLA P. Flexible distributed multienergy generation system expansion planning under uncertainty[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 348-357.
doi: 10.1109/TSG.2015.2411392 URL |
[25] | 于海波. 基于负载率均衡度的电力系统调度策略与风电规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
YU Haibo. Research of power system dispatching strategy and wind power planning based on load rate balance degree[D]. Harbin: Harbin Institute of Technology, 2013. | |
[26] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
doi: 10.1109/4235.996017 URL |
[27] |
WANG J, ZHENG X, TAI N, et al. Resilience-oriented optimal operation strategy of active distribution network[J]. Energies, 2019, 12(17): 3380.
doi: 10.3390/en12173380 URL |
[28] | 姜惠兰, 安星, 王亚微, 等. 基于改进NSGA2算法的考虑风机接入电能质量的多目标电网规划[J]. 中国电机工程学报, 2015, 35(21): 5405-5411. |
JIANG Huilan, AN Xing, WANG Yawei, et al. Improved NSGA2 algorithm based multi-objective planning of power grid with wind farm considering power quality[J]. Proceedings of the CSEE, 2015, 35(21): 5405-5411. | |
[29] | 孙洪波. 电力网络规划[M]. 重庆: 重庆大学出版社, 1996. |
SUN Hongbo. Power network planning[M]. Chongqing: Chongqing University Press, 1996. |
[1] | 李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013. |
[2] | 方晓涛, 严正, 王晗, 徐潇源, 陈玥. 考虑概率电压不平衡度越限风险的共享储能优化运行方法[J]. 上海交通大学学报, 2022, 56(7): 827-839. |
[3] | 马洲俊, 王勇, 王杰, 陈少宇. 柔性控制器MMC子模块最优冗余数量双重协同优化方法[J]. 上海交通大学学报, 2022, 56(3): 325-332. |
[4] | 杨博, 王俊婷, 俞磊, 曹璞璘, 束洪春, 余涛. 基于孔雀优化算法的配电网储能系统双层多目标优化配置[J]. 上海交通大学学报, 2022, 56(10): 1294-1307. |
[5] | 游广增, 汤翔鹰, 胡炎, 邰能灵, 朱欣春, 李玲芳. 基于典型运行场景聚类的电力系统灵活性评估方法[J]. 上海交通大学学报, 2021, 55(7): 802-813. |
[6] | 孙鸿强, 张占月, 方宇强. 基于NSGA-II算法的编队卫星重构策略[J]. 上海交通大学学报, 2021, 55(3): 320-330. |
[7] | 孙欣, 严佳嘉, 谢敬东, 孙波. “碳中和”目标下电气互联系统有功-无功协同优化模型[J]. 上海交通大学学报, 2021, 55(12): 1554-1566. |
[8] | 王运龙, 姜云博, 管官, 邢佳鹏, 于光亮. 基于知识工程的船舶机舱设备三维布局设计[J]. 上海交通大学学报, 2021, 55(10): 1219-1227. |
[9] | 邓召学, 杨青桦, 蔡强, 刘天琴. 应用于汽车动力总成启停工况的磁流变悬置设计与试验[J]. 上海交通大学学报, 2021, 55(1): 56-66. |
[10] | 刘西, 李贤, 陈伟, 从光涛, 李如飞. 基于NSGA-Ⅲ算法的多目标分配方法研究[J]. 空天防御, 2021, 4(1): 109-116. |
[11] | 高云凯, 马超, 刘哲, 田林雳. 基于NSGA-III的白车身焊装生产平台的离散拓扑优化[J]. 上海交通大学学报, 2020, 54(12): 1324-1334. |
[12] | 兰宏凯,柳存根,聂鑫. 船体三维曲板展开方法多目标优化模型[J]. 上海交通大学学报, 2020, 54(10): 1101-1107. |
[13] | 施振兴, 管再升, 王磊, 施臣钢, 伍彬. 基于遗传算法的自动驾驶仪参数多目标优化研究[J]. 空天防御, 2020, 3(1): 41-49. |
[14] | 赖文星, 贾军, 鲍然, 丁士洲. 基于多目标优化的防空武器拦截方案设计方法[J]. 空天防御, 2019, 2(4): 1-6. |
[15] | 王刚成,马宁,顾解忡. 基于Kriging代理模型的船舶水动力性能多目标快速协同优化[J]. 上海交通大学学报(自然版), 2018, 52(6): 666-673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||