上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (11): 1333-1342.doi: 10.16183/j.cnki.jsjtu.2020.427
所属专题: 《上海交通大学学报》2021年“航空航天科学技术”专题; 《上海交通大学学报》2021年12期专题汇总专辑
• • 下一篇
收稿日期:
2020-12-21
出版日期:
2021-11-28
发布日期:
2021-12-03
通讯作者:
张辰
E-mail:piressjtu@sjtu.edu.cn
作者简介:
谭 雪(1996-),女,四川省德阳市人,硕士生,主要从事飞机结冰研究.
基金资助:
TAN Xuea, ZHANG Chena(), XU Wenhaob, WANG Fuxina, WEN Minhuac
Received:
2020-12-21
Online:
2021-11-28
Published:
2021-12-03
Contact:
ZHANG Chen
E-mail:piressjtu@sjtu.edu.cn
摘要:
采用改进延迟脱体涡模拟 (IDDES) 方法,对近失速条件下溢流冰脊诱导的剪切层振荡现象进行高分辨率模拟,描述高雷诺数下冰脊分离流大尺度分离的流场演化特征.研究表明,近失速形态下,冰脊和下翼面尾缘同时诱导出剪切流动,冰脊诱导的剪切层并未再附到壁面,与下翼面上洗流动相互干扰,形成大尺度低能态结构.结合频谱分析进一步发现,剪切层内的压力脉动存在两种典型的脉动频率,与Kelvin-Helmholtz不稳定性相关,具体表现为涡配对和涡脱落.基于正交分解得到的压力脉动主导模态为剪切层之间的大尺度相干结构.主导模态的时间系数与升力系数的功率密度谱峰值保持一致,这说明尾缘区大尺度相干结构与升力波动具有相关性.
中图分类号:
谭雪, 张辰, 徐文浩, 王福新, 文敏华. 近失速形态下冰脊分离非定常流的IDDES和模态分析[J]. 上海交通大学学报, 2021, 55(11): 1333-1342.
TAN Xue, ZHANG Chen, XU Wenhao, WANG Fuxin, WEN Minhua. Unsteadiness and Modal Analysis of Ridge Ice-Induced Separation in Post-Stall Conditions via IDDES[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1333-1342.
[1] | 顾洪宇, 桑为民, 庞润, 等. 机翼热气防冰及冰脊形成数值模拟[J]. 气体物理, 2019, 4(4):41-49. |
GU Hongyu, SANG Weimin, PANG Run, et al. Numerical simulation of wing hot air anti-icing and ice ridge formation[J]. Physics of Gases, 2019, 4(4):41-49. | |
[2] |
ZHANG C, LIU H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing[J]. Physics of Fluids, 2016, 28(6):062107.
doi: 10.1063/1.4953411 URL |
[3] |
POURYOUSSEFI S G, MIRZAEI M, NAZEMI M M, et al. Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil[J]. Chinese Journal of Aeronautics, 2016, 29(3):585-595.
doi: 10.1016/j.cja.2016.03.002 URL |
[4] |
ZHANG Y, HABASHI W G, KHURRAM R A. Zonal detached-eddy simulation of turbulent unsteady flow over iced airfoils[J]. Journal of Aircraft, 2015, 53(1):168-181.
doi: 10.2514/1.C033253 URL |
[5] | 李焱鑫, 顾新. 民机SLD结冰研究和适航验证的发展与挑战[J]. 中国民航大学学报, 2020, 38(4):48-53. |
LI Yanxin, GU Xin. Development and challenges of supercooled large drop icing research for civil airplane airworthiness certification[J]. Journal of Civil Aviation University of China, 2020, 38(4):48-53. | |
[6] | Federal Aviation Administration. Federal Aviation Administration on airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing condition [EB/OL]. (2014-04-11)[2019-12-13]. http://www.federalregister.gov/documents/2014/11/04/2014-25789/airplane-and-engine-certification-requirements-in-supercooled-large drop-mixed-phase-and-ice-crystal-icing-condition. |
[7] | BROEREN A, BRAGG M. Effect of airfoil geometry on performance with simulated intercycle ice accretions[C]// 41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia, USA: AIAA, 2003: 1-16. |
[8] |
LEE S, BRAGG M B. Investigation of factors affecting iced-airfoil aerodynamics[J]. Journal of Aircraft, 2003, 40(3):499-508.
doi: 10.2514/2.3123 URL |
[9] | 李冬, 张辰, 王福新, 等. 结冰对带舵面翼型流场的影响及其气动参数分析[J]. 上海交通大学学报, 2017, 51(3):367-373. |
LI Dong, ZHANG Chen, WANG Fuxin, et al. Effect of icing on airfoil with control surface and analysis of aerodynamic parameters[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3):367-373. | |
[10] |
PAN J P, LOTH E. Detached eddy simulations for iced airfoils[J]. Journal of Aircraft, 2005, 42(6):1452-1461.
doi: 10.2514/1.11860 URL |
[11] | TRAVIN A K, SHUR M L, SPALART P R, et al. Improvement of delayed detached-eddy simulation for LES with wall modelling[EB/OL]. (2006-09-07) [2020-10-21]. https://repository.tudelft.nl/islandora/object/uuid: dbcd7d38-60cb-4107-a6cf-9f4b5dd637a9?collection=research. |
[12] |
XIAO M C, ZHANG Y F, ZHOU F. Numerical study of iced airfoils with horn features using large-eddy simulation[J]. Journal of Aircraft, 2018, 56(1):94-107.
doi: 10.2514/1.C034986 URL |
[13] | 张恒, 李杰, 龚志斌. 基于IDDES方法的翼型结冰失速分离流动数值模拟[J]. 空气动力学学报, 2016, 34(3):283-288. |
ZHANG Heng, LI Jie, GONG Zhibin. Numerical simulation of the stall separated flow around an iced airfoil based on IDDES[J]. Acta Aerodynamica Sinica, 2016, 34(3):283-288. | |
[14] |
HU S F, ZHANG C, LIU H, et al. Study on vortex shedding mode on the wake of horn/ridge ice contamination under high-Reynolds conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(13):5045-5056.
doi: 10.1177/0954410019835971 URL |
[15] |
ANSELL P J, BRAGG M B. Unsteady modes in flowfield about airfoil with horn-ice shape[J]. Journal of Aircraft, 2015, 53(2):475-486.
doi: 10.2514/1.C033421 URL |
[16] |
ANSELL P J, BRAGG M B. Characterization of low-frequency oscillations in the flowfield about an iced airfoil[J]. AIAA Journal, 2014, 53(3):629-637.
doi: 10.2514/1.J053206 URL |
[17] |
MA X Y, SCHRÖDER A. Analysis of flapping motion of reattaching shear layer behind a two-dimensional backward-facing step[J]. Physics of Fluids, 2017, 29(11):115104.
doi: 10.1063/1.4996622 URL |
[18] | HU S F, ZHANG C, LIU H, et al. IDDES simulation of flow separation on an 3-D NACA23012 airfoil with spanwise ridge ice[C]// 2018 Atmospheric and Space Environments Conference. Atlanta, Georgia, USA: AIAA, 2018: 1-10. |
[19] |
LI G H, FU X, WANG F X. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes[J]. International Journal of Computational Fluid Dynamics, 2017, 31(9):379-395.
doi: 10.1080/10618562.2017.1387251 URL |
[20] | JAMESON A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings[C]// 10th Computational Fluid Dynamics Conference. Honolulu, HI, USA: AIAA, 1991: 1-14. |
[21] | ZHANG C, HU S F, LI Y X, et al. Modal analysis of 3-D iced-airfoil aerodynamics based on proper orthogonal decomposition techniques[C]// AIAA Scitech 2019 Forum. San Diego, California, USA: AIAA, 2019: 1-11. |
[1] | 丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198. |
[2] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[3] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[4] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[5] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[6] | 薛飞, 王誉超, 伍彬. 高速飞行器后向分离特性研究[J]. 空天防御, 2022, 5(3): 80-86. |
[7] | 杜登轩 , 乐绍林 , 周 欢 , HtayHtayAung , 喻国良. 均匀来流中承台相对埋深对复合桩 墩局部水动力及冲刷的影响 [J]. 海洋工程装备与技术, 2022, 9(2): 64-71. |
[8] | 郑高媛, 赵亦希, 崔峻辉. 车身用铝饰条拉弯成形面畸变缺陷形成规律[J]. 上海交通大学学报, 2022, 56(1): 53-61. |
[9] | 金戈, 范珉, 周振栋, 谭勇, 钟小波. 升降式止回阀动态特性分析与改进[J]. 上海交通大学学报, 2021, 55(S2): 110-118. |
[10] | 徐德辉, 顾汉洋, 刘莉, 黄超. 新型锥形式旋叶汽水分离器热态试验与数值研究[J]. 上海交通大学学报, 2021, 55(9): 1087-1094. |
[11] | 刘恒, 伍锐, 孙硕. 非均匀流场螺旋桨空泡数值模拟[J]. 上海交通大学学报, 2021, 55(8): 976-983. |
[12] | 王超, 刘正, 李兴, 汪春辉, 徐佩. 自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响[J]. 上海交通大学学报, 2021, 55(8): 990-1000. |
[13] | 李岩松, 丁鼎倩, 韩东, 刘静, 梁永图. 起伏输油管道临界完全携积水油速数值模拟[J]. 上海交通大学学报, 2021, 55(7): 878-890. |
[14] | 张源, 李范春, 贾德君. 点阵压气机叶轮的设计与3D打印仿真[J]. 上海交通大学学报, 2021, 55(6): 729-740. |
[15] | 赵朋飞, 薛昕, 杨成. 模拟碱骨料反应引起的箍筋端部锚固退化对钢筋混凝土梁受剪性能的影响[J]. 上海交通大学学报, 2021, 55(6): 681-688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||