上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (9): 924-934.doi: 10.16183/j.cnki.jsjtu.2019.308
收稿日期:
2019-10-28
出版日期:
2020-09-28
发布日期:
2020-10-10
通讯作者:
王晓亮
E-mail:wangxiaoliang@sjtu.edu.cn
作者简介:
张宇(1996-),男,硕士生,湖北省天门市人,主要从事飞行器的计算空气动力学和动网格方面研究
基金资助:
Received:
2019-10-28
Online:
2020-09-28
Published:
2020-10-10
Contact:
WANG Xiaoliang
E-mail:wangxiaoliang@sjtu.edu.cn
摘要:
为研究柔性螺旋桨的气动弹性效应和推进性能,以成熟的计算流体力学和计算固体力学软件为平台,建立径向点插值方法(RPIM)以完成网格节点的位移传递,由虚位移原理辅助完成载荷传递的螺旋桨气动弹性分析框架.该方法可以避免生成奇异的插值矩阵,具有数值稳定性,适用于任意分布的节点,且能保证在数据传递过程中不发生能量损耗.流场网格更新通过Delaunay映射方法实现.研究结果表明:在所设置的工况中,桨叶沿来流方向的最大变形量可达桨叶半径的9.4%,旋转平面内的变形量约为来流方向上的52.1%;变形会使螺旋桨的迎风面受到更大的正压力,进而导致柔性螺旋桨产生比刚性螺旋桨更高的推力和扭矩,其最大改变量分别为7.2%和9.9%;气动弹性效应基本不会对推进效率产生影响.综上,在螺旋桨处于大推力、低速工况下时,气动弹性效应对推进性能有较大的影响,能够在基本维持原有效率不变的情况下提高推力.
中图分类号:
张宇, 王晓亮. 基于径向点插值方法的柔性螺旋桨气动弹性模拟[J]. 上海交通大学学报, 2020, 54(9): 924-934.
ZHANG Yu, WANG Xiaoliang. Simulation on Aeroelasticity of Flexible Propellers Based onRadial Point Interpolation Method[J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 924-934.
表3
CFD/CSD模块节点力传递结果
插值方法 | 模块及对比项 | Fx/kN | Fy/kN | Fz/kN | Mx/(kN·m) | My/(kN·m) | Mz/(kN·m) |
---|---|---|---|---|---|---|---|
RPIM | CFD | 55.335 | 619.233 | 1.113 | 2734.119 | 215.784 | 1568.467 |
CSD | 55.335 | 619.233 | 1.113 | 2734.120 | 215.784 | 1568.467 | |
er/% | 0 | 0 | 0 | 0 | 0 | 0 | |
tc/s | 20.03 | 20.03 | 20.03 | 20.03 | 20.03 | 20.03 | |
RBF | CSD | 47.290 | 400.419 | -2.769 | 1698.473 | 179.547 | 1034.293 |
er/% | -14.5 | -35.3 | -348.8 | -37.9 | -16.8 | -34.1 | |
tc/s | 32.13 | 32.13 | 32.13 | 32.13 | 32.13 | 32.13 |
[1] | qwSANCHES L, GUIMARÃES T A M, MARQUES F D. Aeroelastic tailoring of nonlinear typical section using the method of multiple scales to predict post-flutter stable LCOs[J]. Aerospace Science and Technology, 2019,90:157-168. |
[2] | 杜特专, 王一伟, 黄晨光, 等. 航行体水下发射流固耦合效应分析[J]. 力学学报, 2017,49(4):782-792. |
DU Tezhuan, WANG Yiwei, HUANG Chenguang, et al. Study on coupling effects of underwater launched vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):782-792. | |
[3] | MA Z, ZENG P, LEI L P. Analysis of the coupled aeroelastic wake behavior of wind turbine[J]. Journal of Fluids and Structures, 2019,84:466-484. |
[4] | GAO M Z, CAI G P. Robust fault-tolerant control for wing flutter under actuator failure[J]. Chinese Journal of Aeronautics, 2016,29(4):1007-1017. |
[5] | KUMAR J, WURM F H. Bi-directional fluid-structure interaction for large deformation of layered composite propeller blades[J]. Journal of Fluids and Structures, 2015,57:32-48. |
[6] | 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016,37(1):45-56. |
ZHAO Da, LIU Dongxu, SUN Kangwen, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(1):45-56. | |
[7] | 李欢, 龚小权, 唐静, 等. 非定常预处理方法在倾转旋翼飞行器悬停状态气动干扰模拟中的应用[J]. 航空动力学报, 2019,34(2):396-409. |
LI Huan, GONG Xiaoquan, TANG Jing, et al. Application of unsteady preconditioning to aerodynamic interaction simulation of tiltrotor aircraft in hover[J]. Journal of Aerospace Power, 2019,34(2):396-409. | |
[8] | CHABAUD G, CASTRO M, DENOUAL C, et al. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications[J]. Additive Ma-nufacturing, 2019,26:94-105. |
[9] | SODJA J, DE BREUKER R, NOZAK D, et al. Assessment of low-fidelity fluid-structure interaction model for flexible propeller blades[J]. Aerospace Science and Technology, 2018,78:71-88. |
[10] | HSIAO C T, CHAHINE G L. Dynamic response of a composite propeller blade subjected to shock and bubble pressure loading[J]. Journal of Fluids and Structures, 2015,54:760-783. |
[11] | ZHANG X T, HONG Y, YANG F, et al. Propulsive efficiency and structural response of a sandwich composite propeller[J]. Applied Ocean Research, 2019,84:250-258. |
[12] | DAS H N, KAPURIA S. On the use of bend-twist coupling in full-scale composite marine propellers for improving hydrodynamic performance[J]. Journal of Fluids and Structures, 2016,61:132-153. |
[13] | 王建, 杨卓懿, 庞永杰, 等. 流固耦合作用下的碳纤维螺旋桨多目标优化[J]. 华中科技大学学报(自然科学版), 2014,42(12):47-52. |
WANG Jian, YANG Zhuoyi, PANG Yongjie, et al. Multi-objective optimization for carbon fiber propeller based on fluid and structure interaction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014,42(12):47-52. | |
[14] | 娄本强, 嵇春艳. 船用螺旋桨流固耦合振动特性分析[J]. 大连理工大学学报, 2019,59(2):154-161. |
LOU Benqiang, JI Chunyan. FSI vibrations characteristics analysis of marine propeller[J]. Journal of Dalian University of Technology, 2019,59(2):154-161. | |
[15] | NOURMOHAMMADI H, BEHJAT B. Geometrically nonlinear analysis of functionally graded piezoelectric plate using mesh-free RPIM[J]. Engineering Analysis with Boundary Elements, 2019,99:131-141. |
[16] | LIU X Q, QIN N, XIA H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006,211(2):405-423. |
[17] | 任晓峰, 段卓毅, 魏剑龙. 滑流对飞机纵向静稳定性影响的数值模拟[J]. 空气动力学学报, 2017,35(3):383-391. |
REN Xiaofeng, DUAN Zhuoyi, WEI Jianlong. Numerical simulation of propeller slipstream effects on pitching static stability[J]. Acta Aerodynamica Sinica, 2017,35(3):383-391. | |
[18] | KUITCHE M A J, BOTEZ R M. Modeling novel methodologies for unmanned aerial systems—Applications to the UAS-S4 Ehecatl and the UAS-S45 Bálaam[J]. Chinese Journal of Aeronautics, 2019,32(1):58-77. |
[19] | ROMANI L, ROSSINI M, SCHENONE D. Edge detection methods based on RBF interpolation[J]. Journal of Computational and Applied Mathematics, 2019,349:532-547. |
[20] | 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006. |
LIU Peiqing. Air propeller theory and its application[M]. Beijing: Beihang University Press, 2006. |
[1] | 王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167. |
[2] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[3] | 陈志鑫, 汪怡平, 杨亚锋, 苏建军, 杨斌. 不同送风方式下大客车内飞沫传播特性研究[J]. 上海交通大学学报, 2022, 56(11): 1532-1540. |
[4] | 张宇, 王晓亮. 基于显式动力学的软式飞艇流固耦合计算框架[J]. 上海交通大学学报, 2021, 55(3): 311-319. |
[5] | 王瑞, 肖瑶, 顾汉洋, 叶亚楠. 螺旋管内单相流动周向非均匀传热现象的数值模拟[J]. 上海交通大学学报, 2020, 54(7): 688-696. |
[6] | . 半潜式钻井平台风载特征及影响因素分析[J]. 海洋工程装备与技术, 2019, 6(3): 548-. |
[7] | 窦怡彬, 孙文钊, 樊浩, 梅星磊, 曾清香. 基于共旋有限元格式的非线性连接翼气动弹性响应分析[J]. 空天防御, 2019, 2(2): 53-61. |
[8] | 郁程,董小倩,杨晨俊. 侧推器体积力模型及其应用[J]. 上海交通大学学报(自然版), 2018, 52(3): 291-296. |
[9] | 李懿霖,宋保维. 空化器直径对超空泡航行器空泡性能的影响[J]. 上海交通大学学报(自然版), 2017, 51(12): 1488-1492. |
[10] | 米百刚,詹浩. 先进飞行器动导数数值模拟新方法[J]. 上海交通大学学报(自然版), 2016, 50(04): 619-624. |
[11] | 刘承江1,王永生1,古成中2. 船-泵相互作用对喷水推进器推进性能的影响[J]. 上海交通大学学报(自然版), 2016, 50(01): 91-97. |
[12] | 刘晗a,马宁a,b*,邵闯a,顾解忡a,b. 限宽水域中船舶平面运动机构试验及水动力导数数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 115-122. |
[13] | 周振龙,朱锡,张帅. 螺旋桨CFD不确定度及叶形对桨叶变形的影响[J]. 上海交通大学学报(自然版), 2014, 48(1): 74-80. |
[14] | 刘强,谢伟,邱辽原,解学参. 桌面计算机上利用格子Boltzmann方法的GPU计算[J]. 上海交通大学学报(自然版), 2014, 48(09): 1329-1333. |
[15] | 田文龙,宋保维,毛昭勇. 水下航行器海流发电装置叶轮的数值仿真[J]. 上海交通大学学报(自然版), 2013, 47(08): 1306-1311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||