上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (9): 916-923.doi: 10.16183/j.cnki.jsjtu.2020.170
收稿日期:
2019-07-30
出版日期:
2020-09-28
发布日期:
2020-10-10
作者简介:
韩红桂(1983-),男,江苏省泰州市人,教授,现主要从事城市污水处理过程建模、优化和控制研究.电话(Tel.): 010-67391631;E-mail: 基金资助:
HAN Honggui(), YANG Shiheng, ZHANG Lu, QIAO Junfei
Received:
2019-07-30
Online:
2020-09-28
Published:
2020-10-10
摘要:
为了改善城市污水处理过程出水氨氮的处理效果,提出一种城市污水处理过程出水氨氮优化控制方法.首先,基于机理特性分析影响出水氨氮浓度的性能指标,建立一种基于自适应核函数的性能指标与控制变量的关联模型,并通过粒子群优化算法获取控制变量溶解氧浓度的优化设定值;其次,设计自适应模糊神经网络控制器,完成溶解氧浓度优化设定值的跟踪控制;最后,将出水氨氮优化控制方法应用于基准仿真平台BSM1.实验结果表明,该优化控制方法不仅提高了出水氨氮的去除效果,而且有效降低了能耗.
中图分类号:
韩红桂, 杨士恒, 张璐, 乔俊飞. 城市污水处理过程出水氨氮优化控制[J]. 上海交通大学学报, 2020, 54(9): 916-923.
HAN Honggui, YANG Shiheng, ZHANG Lu, QIAO Junfei. Optimal Control of Effluent Ammonia Nitrogen for Municipal Wastewater Treatment Process[J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 916-923.
[1] | ADAM M R, OTHMAN M H D, SAMAH R A, et al. Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development[J]. Separation and Purification Technology, 2019,213:114-132. |
[2] | AOUDJ S, KHELIFA A, DROUICHE N. Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation[J]. Chemosphere, 2017,180:379-387. |
[3] | MULAS M, TRONCI S, CORONA F, et al. Predictive control of an activated sludge process: An application to the Viikinm?ki wastewater treatment plant[J]. Journal of Process Control, 2015,35:89-100. |
[4] | HAN H G, QIAN H H, QIAO J F. Nonlinear multiobjective model predictive control scheme for wastewater treatment process[J]. Journal of Process Control, 2014,24(3):47-59. |
[5] | ZHU Z Y, WANG R Y, LI Y M. Evaluation of the control strategy for aeration energy reduction in a nutrient removing wastewater treatment plant based on the coupling of ASM1 to an aeration model[J]. Biochemical Engineering Journal, 2017,124:44-53. |
[6] | ?MAND L, CARLSSON B. The optimal dissolved oxygen profile in a nitrifying activated sludge process-comparisons with ammonium feedback control[J]. Water Science and Technology, 2013,68(3):641-649. |
[7] | ZULUAGA B C, RUIZ B M, OSPINA A M, et al. A dynamical model of an aeration plant for wastewater treatment using a phenomenological based semi-physical modeling methodology[J]. Computers and Chemical Engineering, 2018,117:420-432. |
[8] | BOOG J, KALBACHER T, NIVALA J, et al. Modeling the relationship of aeration, oxygen transfer and treatment performance in aerated horizontal flow treatment wetlands[J]. Water Research, 2019,157:321-334. |
[9] | ?MAND L, CARLSSON B. Optimal aeration control in a nitrifying activated sludge process[J]. Water Research, 2012,46(7):2101-2110. |
[10] | CHEN Q W, WANG Q B, YAN H L, et al. Improve the performance of full-scale continuous treatment of municipal wastewater by combining a numerical model and online sensors[J]. Water Science and Technology, 2018,78(8):1658-1667. |
[11] | ODRIOZOLA J, BELTRN S, DALMAU M, et al. Model-based methodology for the design of optimal control strategies in MBR plants[J]. Water Science and Technology, 2017,75(11):2546-2553. |
[12] | BISTA K R, KHATIWADA N R, KHYAJU S. Kinetics of organic matter and ammonia removal in horizontal reed beds treating wastewater in Nepal[J]. Water Science and Technology, 2015,72(11):1981-1987. |
[13] | LUAN D Y, ZHANG S F, WEI X, et al. Study on mathematical model to predict aerated power consumption in a gas-liquid stirred tank[J]. Results in Physics, 2017,7:4085-4088. |
[14] | ZHAO J, WANG X X, LI X Y, et al. Advanced nutrient removal from ammonia and domestic wastewaters by a novel process based on simultaneous partial nitrification-anammox and modified denitrifying phosphorus removal[J]. Chemical Engineering Journal, 2018,354:589-598. |
[15] | OZTURK M C, SERRAT F M, TEYMOUR F. Optimization of aeration profiles in the activated sludge process[J]. Chemical Engineering Science, 2016,139:1-14. |
[16] | ANTONIO F T, LORENA P S. Optimal model-based aeration control policies in a sequencing batch reactor[J]. Computers and Chemical Engineering, 2016,85:124-135. |
[17] | KIM H, KIM Y, HOANG T Q, et al. Application of real-time feedback control strategies based on effluent NH4-N and NOX-N concentrations in an A2/O process[J]. Korean Journal of Chemical Engineering, 2013,30(8):1578-1587. |
[18] | FERNáNDEZ F J, CASTRO M C, RODRIGO MA, et al. Reduction of aeration costs by tuning a multi-set point on/off controller: A case study[J]. Control Engineering Practice, 2011,19(10):1231-1237. |
[19] | HAN H G, WU X L, LIU Z, et al. Design of self-organizing intelligent controller using fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems, 2018,26(5):3097-3111. |
[20] | 张晓迪, 蔡云泽, 何星, 等. 基于神经网络的不稳定时滞对象控制[J]. 上海交通大学学报, 2014,48(7):1033-1038. |
ZHANG Xiaodi, CAI Yunze, HE Xing, et al. Neural network control unstable processes with time delay[J]. Journal of Shanghai Jiao Tong University, 2014,48(7):1033-1038. | |
[21] | 张光明, 李柠, 李少远. 一种数据驱动的预测控制器性能监控方法[J]. 上海交通大学学报, 2011,45(8):1113-1118. |
ZHANG Guangming, LI Ning, LI Shaoyuan. A data-driven approach for model predictive control performance monitoring[J]. Journal of Shanghai Jiao Tong University, 2011,45(8):1113-1118. | |
[22] | ZHANG Z J, KUSIAK A, ZENG Y H, et al. Modeling and optimization of a wastewater pumping system with data-mining methods[J]. Applied Energy, 2016,164:303-311. |
[23] | HUANG M Z, WAN J Q, MA Y W, et al. Control rules of aeration in a submerged biofilm wastewatertreatment process using fuzzy neural networks[J]. Expert Systems with Applications, 2009,36(7):10428-10437. |
[24] | KOTZAPETROS A D, PARASKEVAS P A, STASINAKIS A S. Design of a modern automatic control system for the activated sludge process in wastewater treatment[J]. Chinese Journal of Chemical Engineering, 2015,23(8):1340-1349. |
[25] | ?MAND L, OLSSON G, CARLSSON B. Aeration control: A review[J]. Water Science and Technology, 2013,67(11):2374-2398. |
[26] | HENZE M, GUJER W, MINO T, et al. Activated sludge models ASM1, ASM2, ASM2d and ASM3[M]. London, UK: IWA Publishing, 2000. |
[27] | ZHAN J X, IKEHATA M, MAYUZUMI M, et al. An aeration control strategy for oxidation ditch processes based on online oxygen requirement estimation[J]. Water Science and Technology, 2013,68(1):76-82. |
[28] | QIAO J F, ZHANG W. Dynamic multi-objective optimization control for wastewater treatment process[J]. Neural Computing and Applications, 2018,29(11):1261-1271. |
[1] | 周毅, 周良才, 丁佳立, 高佳宁. 基于深度强化学习的电网拓扑优化及潮流控制[J]. 上海交通大学学报, 2021, 55(S2): 7-14. |
[2] | 李劲松a,杨炼b,王乐天a. 小型四旋翼无人直升机自适应优化控制[J]. 上海交通大学学报(自然版), 2015, 49(02): 202-208. |
[3] | 白锐1,2,任群英1,郭万里1. 生料浆制备过程的优化控制软件[J]. 上海交通大学学报(自然版), 2014, 48(07): 998-1003. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||