[1] |
REN Z, SKJETNE R, HASSANI V . Supervisory control of line breakage for thruster-assisted position mooring system[J]. IFAC-PapersOnLine, 2015,48(16):235-240.
|
[2] |
雷正玲, 郭晨, 刘正江 . 船舶锚泊辅助动力定位的抗扰控制[J]. 哈尔滨工程大学学报, 2015,1(36):24-28.
|
|
LEI Zhengling, GUO Chen, LIU Zhengjiang . Disturbance rejection control over ship thruster-assisted mooring positioning[J]. Journal of Harbin Engineering University, 2015,1(36):24-28.
|
[3] |
JAYASIRI A, NANDAN A, IMTIAZ S , et al. Dynamic positioning of vessels using a UKF-based observer and an NMPC-based controller[J]. IEEE Transactions on Automation Science and Engineering, 2017,14(4):1778-1785.
doi: 10.1109/TASE.2017.2698923
URL
|
[4] |
DING H, FENG H, XU H . An adaptive unscented Kalman filter for tracking sudden environmental forces changes in dynamic positioning system[J]. Journal of Ship Mechanics, 2017,21(6):711-721.
|
[5] |
苏义鑫, 赵俊, 张华军 . 带有UKBF的船舶动力定位预测控制器设计[J]. 西南交通大学学报, 2018,53(3):589-594.
|
|
SU Yixin, ZHAO Jun, ZHANG Huajun . Predictive controller with UKBF for marine dynamic positioning system[J]. Journal of Southwest Jiaotong University, 2018,53(3):589-594.
|
[6] |
WANG Y, TUO Y, YANG S X , et al. Reliability-based robust dynamic positioning for a turret-moored floating production storage and offloading vessel with unknown time-varying disturbances and input saturation.[J]. Isa Transactions, 2018,78:66-79.
doi: 10.1016/j.isatra.2017.12.023
URL
pmid: 29370899
|
[7] |
黄成, 王岩 . 交会对接模拟系统姿态跟踪有限时间抗干扰控制[J]. 控制与决策, 2017,32(7):1189-1195.
|
|
HUANG Cheng, WANG Yan . Finite-time active disturbance rejection attitude tracking control for rendezvous and docking simulator[J]. Control and Decision, 2017,32(7):1189-1195.
|
[8] |
XIA G, SUN C, ZHAO B , et al. Cooperative control of multiple dynamic positioning vessels with input saturation based on finite-time disturbance observer[J]. International Journal of Control, Automation and Systems, 2019,17(2):370-379.
doi: 10.1007/s12555-018-0383-4
URL
|
[9] |
SU Y, ZHENG C . Robust finite-time output feedback control of perturbed double integrator[J]. Automatica, 2015,60:86-91.
doi: 10.1016/j.automatica.2015.07.008
URL
|
[10] |
ZOU A M, DE RUITER A H J, KUMAR K D. Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016,67:46-53.
doi: 10.1016/j.automatica.2015.12.029
URL
|
[11] |
KUMAR P R, BEHERA A K, BANDYOPADHYAY B . Robust finite-time tracking of stewart platform: A super-twisting like observer-based forward kinematics solution[J]. IEEE Transactions on Industrial Electronics, 2017,64(5):3776-3785.
doi: 10.1109/TIE.2017.2652341
URL
|
[12] |
HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge, U.K.: Cambridge Univ. Press, 1952.
|
[13] |
BHAT S P, BERNSTEIN D S . Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals & Systems, 2005,17(2):101-127.
|
[14] |
ZOU A . Finite-time output feedback attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Control Systems Technology, 2014,22(1):338-345.
doi: 10.1109/TCST.2013.2246836
URL
|
[15] |
付明玉, 张爱华, 徐金龙 . 船舶轨迹跟踪半全局一致指数稳定观测控制器[J]. 控制与决策, 2013,28(6):920-924.
|
|
FU Mingyu, ZHANG Aihua, XU Jinlong . Semi-global uniform exponential stable observer-controller for trajectory tracking of ships[J]. Control and Decision, 2013,28(6):920-924.
|
[16] |
FU M, YU L . Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances[J]. Ocean Engineering, 2018,159:219-227.
doi: 10.1016/j.oceaneng.2018.04.016
URL
|