上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (8): 856-865.doi: 10.16183/j.cnki.jsjtu.2019.066
王林涛1,2, 孙春华1(), 林志民2, 虞翔宇2, 乔信起1, 袁雄1, 王继刚1
收稿日期:
2019-03-13
出版日期:
2020-08-28
发布日期:
2020-08-18
通讯作者:
孙春华
E-mail:sunchunhua@sjtu.edu.cn
作者简介:
王林涛(1982-),男,山东省莱阳市人,高级工程师,研究方向为特种发动机
基金资助:
WANG Lintao1,2, SUN Chunhua1(), LIN Zhimin2, YU Xiangyu2, QIAO Xinqi1, YUAN Xiong1, WANG Jigang1
Received:
2019-03-13
Online:
2020-08-28
Published:
2020-08-18
Contact:
SUN Chunhua
E-mail:sunchunhua@sjtu.edu.cn
摘要:
采用解耦法构建了生物柴油骨架反应机理,并建立了斯特林发动机喷雾燃烧仿真模型.对比研究了斯特林发动机燃用生物柴油和石化柴油的燃烧特性,给出了引射比对生物柴油燃烧温度、速度、组分场的影响.研究结果表明,本文构建的生物柴油简化机理Bio-37在较好预测高温着火特性的前提下,有效将反应步数降至100以下;相比石化柴油,斯特林发动机燃用生物柴油后,生物柴油的含氧特性得到充分发挥,其燃烧温度、速度场分布更为均匀,挡焰板处温度也有所降低,设备安全性提升.增大引射比可降低燃烧室最高温度,改善温度分布均匀性,增大换热管处温度和气流强度,具有强化传热传质效用.同时还可减少挡焰板热负荷,提升设备可靠性.
中图分类号:
王林涛, 孙春华, 林志民, 虞翔宇, 乔信起, 袁雄, 王继刚. 引射比对生物柴油斯特林发动机燃烧影响的仿真研究[J]. 上海交通大学学报, 2020, 54(8): 856-865.
WANG Lintao, SUN Chunhua, LIN Zhimin, YU Xiangyu, QIAO Xinqi, YUAN Xiong, WANG Jigang. Simulation Study of Effect of Ejection Ratio on Combustion of a Stirling Engine Fueled with Biodiesel[J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 856-865.
[1] |
GAPONENKO A M, KAGRAMANOVA A A. Analysis of the Stirling engine in the Schmidt appro-ximation[J]. Journal of Physics: Conference Series, 2018,1111:012019.
doi: 10.1088/1742-6596/1111/1/012019 URL |
[2] | 黄晓宇, 邓康耀, 刘焜, 等. 斯特林发动机高背压燃烧换热性能影响因素分析[J]. 舰船科学技术, 2018,40(23):104-110. |
HUANG Xiaoyu, DENG Kangyao, LIU Kun, et al. Analysis of high back-pressure heat transfer in stirling engine[J]. Ship Science and Technology, 2018,40(23):104-110. | |
[3] | 伍赛特. 斯特林发动机应用于车用动力装置的可行性分析研究[J]. 节能技术与应用, 2018,37(9):71-73. |
WU Saite. The feasibility analysis of Stirling engine used in vehicle engines[J]. Energy and Conservation, 2018,37(9):71-73. | |
[4] |
AHMADI M H, AHMADI M A, POURFAYAZ F. Thermal models for analysis of performance of Stirling engine: A review[J]. Renewable and Sustainable Energy Reviews, 2017,68:168-184.
doi: 10.1016/j.rser.2016.09.033 URL |
[5] | 喻超, 陈晓玲, 周小力, 等. 空气引射对斯特林发动机火焰特征及燃烧温度的影响[J]. 燃烧科学与技术, 2012,18(6):556-561. |
YU Chao, CHEN Xiaoling, ZHOU Xiaoli, et al. Effect of air ejecting on flame characteristics and combustion temperature of Stirling engine[J]. Journal of Combustion Science and Technology, 2012,18(6):556-561. | |
[6] |
DAMIRCHI H, NAJAF G, ALIZADEHNIA S, et al. Micro combined heat and power to provide heat and electrical power using biomass and Gamma-type Stirling engine[J]. Applied Thermal Engineering, 2016,103:1460-1469.
doi: 10.1016/j.applthermaleng.2016.04.118 URL |
[7] |
KALDEHI B J, KEHAVARZ A A, SAFAEI PIROOZ A, et al. Designing a micro Stirling engine for cleaner production of combined cooling heating and power in residential sector of different climates[J]. Journal of Cleaner Production, 2017,154:502-516.
doi: 10.1016/j.jclepro.2017.04.006 URL |
[8] | 胡怀礼, 张武高, 金永星, 等. 斯特林发动机喷雾特性试验研究[J]. 农业机械学报, 2010,41(2):10-16. |
HU Huaili, ZHANG Wugao, JIN Yongxing, et al. Experimental study on fuel spray characteristics of Stiring engine[J]. Transactions of The Chinese Society for Agricultural Machinery, 2010,41(2):10-16. | |
[9] | 蔺锋, 张武高, 陈晓玲, 等. 斯特林发动机压力涡流喷嘴的喷雾特性试验[J]. 上海交通大学学报, 2013,47(11):1773-1777. |
LIN Feng, ZHANG Wugao, CHEN Xiaoling, et al. Experimental study on fuel spray characteristics of pressure-swirl nozzle of Stirling engine[J]. Journal of Shanghai Jiao Tong University, 2013,47(11):1773-1777. | |
[10] |
PAUL C J, ENGEDA A. A Stirling engine for use with lower quality fuels[J]. Energy, 2015,84:152-160.
doi: 10.1016/j.energy.2015.02.109 URL |
[11] |
XIN F, LIU Z, WANG S, et al. Study of heat transfer in oscillatory flow for a Stirling engine heating tube inserted with spiral spring[J]. Applied Thermal Engineering, 2018,143:182-192.
doi: 10.1016/j.applthermaleng.2018.07.071 URL |
[12] | 叶拥拥, 兰健, 吕田, 等. 斯特林发动机燃烧室氧-柴油无焰燃烧的数值研究[J]. 舰船科学技术, 2016,38(10):84-88. |
YE Yongyong, LAN Jian, LV Tian, et al. Numerical study on flameless oxy-diesel combustion in Stirling engine combustor[J]. Ship Science and Technology, 2016,38(10):84-88. | |
[13] |
EL-GHAFOUR S A, EL-GHANDOUR M, MIKHAEL N. Three-dimensional computational fluid dynamics simulation of Stirling engine[J]. Energy Conversion and Management, 2019,180:533-549.
doi: 10.1016/j.enconman.2018.10.103 URL |
[14] | 张锋, 孙旺生. 斯特林发动机天然气扩散燃烧数值模拟[J]. 南京工程学院学报, 2017,15(4):54-58. |
ZHANG Feng, SUN Wangsheng. A numerical study of methane-air flame on Stirling combustors[J]. Journal of Nanjing Institute of Technology. 2017,15(4):54-58. | |
[15] |
LELE A D, VALLABHUNI S K, MOSHAMMER K, et al. Experimental and chemical kinetic modeling investigation of methyl butanoate as a component of biodiesel surrogate[J]. Combustion and Flame, 2018,197:49-64.
doi: 10.1016/j.combustflame.2018.06.033 URL |
[16] |
NEUMANN K, WERTH K, MARTIN A, et al. Biodiesel production from waste cooking oils through esterification: Catalyst screening, chemical equilibrium and reaction kinetics[J]. Chemical Engineering Research and Design, 2016,107:52-62.
doi: 10.1016/j.cherd.2015.11.008 URL |
[17] |
ALVISO D, KRAUCH F, ROMAN R, et al. Deve-lopment of a diesel-biodiesel-ethanol combined chemical scheme and analysis of reactions pathways[J]. Fuel, 2017,191:411-426.
doi: 10.1016/j.fuel.2016.11.039 URL |
[18] | 肖杰, 张博, 郑朝蕾. 适用于HCCI的生物柴油替代混合物简化机理的构建及验证[J]. 物理化学学报, 2017,33(9):1752-1764. |
XIAO Jie, ZHANG Bo, ZHEN Chaolei. Development and validation of a reduced chemical kinetic mechanism for HCCI engine of biodiesel surrogate[J]. Acta Physico-Chimica Sinica, 2017,33(9):1752-1764. | |
[19] |
CHANG Y, JIA M, LI Y, et al. Development of a skeletal oxidation mechanism for biodiesel surrogate[J]. Proceedings of the Combustion Institute, 2015,35(3):3037-3044.
doi: 10.1016/j.proci.2014.09.009 URL |
[20] |
CAMPBELL M F, DAVIDSON D F, HANSON R K, et al. Ignition delay times of methyl oleate and methyl linoleate behind reflected shock waves[J]. Proceedings of the Combustion Institute, 2013,34(1):419-425.
doi: 10.1016/j.proci.2012.05.084 URL |
[21] |
DAGAUT P, SANDRO G, SAHASRABUDHE M. Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio: Experimental and modeling kinetic study[J]. Proceedings of the Combustion Institute, 2007,31(2):2955-2961.
doi: 10.1016/j.proci.2006.07.142 URL |
[22] |
SENECAL P K, SCHMIDT D P, NOUAR I, et al. Modeling high-speed viscous liquid sheet atomication[J]. International Journal of Multiphase Flow, 1999,25(6/7):1073-1097.
doi: 10.1016/S0301-9322(99)00057-9 URL |
[23] | 宋晓超. 生物柴油喷雾特性的数值模拟研究[D]. 天津: 天津大学, 2015. |
SONG Xiaochao. Numerical simulation of spray cha-racteristics of biodiesel[D]. Tianjin: Tianjin University, 2015. |
[1] | 丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198. |
[2] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[3] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[4] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[5] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[6] | 薛飞, 王誉超, 伍彬. 高速飞行器后向分离特性研究[J]. 空天防御, 2022, 5(3): 80-86. |
[7] | 杜登轩 , 乐绍林 , 周 欢 , HtayHtayAung , 喻国良. 均匀来流中承台相对埋深对复合桩 墩局部水动力及冲刷的影响 [J]. 海洋工程装备与技术, 2022, 9(2): 64-71. |
[8] | 郑高媛, 赵亦希, 崔峻辉. 车身用铝饰条拉弯成形面畸变缺陷形成规律[J]. 上海交通大学学报, 2022, 56(1): 53-61. |
[9] | 金戈, 范珉, 周振栋, 谭勇, 钟小波. 升降式止回阀动态特性分析与改进[J]. 上海交通大学学报, 2021, 55(S2): 110-118. |
[10] | 徐德辉, 顾汉洋, 刘莉, 黄超. 新型锥形式旋叶汽水分离器热态试验与数值研究[J]. 上海交通大学学报, 2021, 55(9): 1087-1094. |
[11] | 刘恒, 伍锐, 孙硕. 非均匀流场螺旋桨空泡数值模拟[J]. 上海交通大学学报, 2021, 55(8): 976-983. |
[12] | 王超, 刘正, 李兴, 汪春辉, 徐佩. 自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响[J]. 上海交通大学学报, 2021, 55(8): 990-1000. |
[13] | 李岩松, 丁鼎倩, 韩东, 刘静, 梁永图. 起伏输油管道临界完全携积水油速数值模拟[J]. 上海交通大学学报, 2021, 55(7): 878-890. |
[14] | 张源, 李范春, 贾德君. 点阵压气机叶轮的设计与3D打印仿真[J]. 上海交通大学学报, 2021, 55(6): 729-740. |
[15] | 赵朋飞, 薛昕, 杨成. 模拟碱骨料反应引起的箍筋端部锚固退化对钢筋混凝土梁受剪性能的影响[J]. 上海交通大学学报, 2021, 55(6): 681-688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||