上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (7): 705-717.doi: 10.16183/j.cnki.jsjtu.2020.99.007
包清临,柴华奇,赵嵩正,王吉林
出版日期:
2020-07-28
发布日期:
2020-07-31
通讯作者:
包清临(1990-),女(藏族),甘肃省天水市人,博士生,现主要从事数据挖掘与知识管理研究.
电话(Tel.):029-84766218;E-mail:499195647@qq.com.
基金资助:
BAO Qinglin,CHAI Huaqi,ZHAO Songzheng,WANG Jilin
Online:
2020-07-28
Published:
2020-07-31
摘要: 现有技术机会挖掘结果的应用性较低,究其原因,一是样本量较小,二是挖掘过程缺乏对技术应用前景的评估.为解决这一问题,以提升挖掘结果的应用性为目标,以海量专利为样本,在现有研究的基础上,加入对技术应用前景的评估,提出三维的专利预测模型.采用机器学习下的PLSA算法,结合Hadoop平台下的MapReduce计算框架,运用专利文本挖掘,构建专利预测模型的技术维和功效维;采用熵权和TOPSIS法构建专利预测模型的价值维;基于MapReduce计算框架填充专利预测模型的单元项.并以DII数据库中钛领域1999~2018年 133508 例专利文本为样本应用了专利预测模型.结果显示,该模型在钛领域内共挖掘出了3个优先级和2个次级的技术机会,可以按优先顺序对技术机会进行开发.该模型丰富了技术机会挖掘的方法,为创新主体指明了更为准确和前景化的技术研发方向.
中图分类号:
包清临, 柴华奇, 赵嵩正, 王吉林. 采用机器学习算法的技术机会挖掘模型及应用[J]. 上海交通大学学报, 2020, 54(7): 705-717.
BAO Qinglin, CHAI Huaqi, ZHAO Songzheng, WANG Jilin. Model of Technology Opportunity Mining Using Machine Learning Algorithm and Its Application[J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 705-717.
[1]TRAPPEY A J C, TRAPPEY C V, CHANG A C, et al. Deriving competitive foresight using an ontology-based patent roadmap and valuation analysis[J]. International Journal on Semantic Web and Information Systems, 2019, 15(2): 68-91. [2]FRISHAMMAR J, RICHTNR A, BRATTSTRM A, et al. Opportunities and challenges in the new innovation landscape: Implications for innovation auditing and innovation management[J]. European Management Journal, 2019, 37(2): 151-164. [3]BERG C, ALEXANDER A T. The openness of open innovation in ecosystems: Integrating innovation and management literature on knowledge linkages[J]. Journal of Innovation & Knowledge, 2019, 4(4): 211-218. [4]KARIA N. Knowledge resources, technology resources and competitive advantage of logistics service providers[J]. Knowledge Management Research & Practice, 2018, 16(3): 414-426. [5]KUNCORO W, SURIANI W O. Achieving sustainable competitive advantage through product innovation and market driving[J]. Asia Pacific Management Review, 2018, 23(3): 186-192. [6]CHEN C. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. PNAS, 2004, 101(Sup.1): 5303-5310. [7]GRAFSTRM J. International knowledge spillovers in the wind power industry: Evidence from the European Union[J]. Economics of Innovation and New Technology, 2018, 27(3): 205-224. [8]江屏, 张瑞红, 孙建广, 等. 基于TRIZ的专利规避设计方法与应用[J]. 计算机集成制造系统, 2015, 21(4): 914-923. JIANG Ping, ZHANG Ruihong, SUN Jianguang, et al. Method and application of patent design around based on TRIZ[J]. Computer Integrated Manufacturing Systems, 2015, 21(4): 914-923. [9]WANG M Y, FANG S C, CHANG Y H. Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels[J]. Technological Forecasting and Social Change, 2015, 92: 182-195. [10]JIA L Z, WU C L, ZHU X H, et al. Design by analogy: Achieving more patentable ideas from one creative design[J]. Chinese Journal of Mechanical Engineering, 2018, 31: 37. [11]CHENG T Y. A new method of creating technology/function matrix for systematic innovation without expert[J]. Journal of Technology Management & Innovation, 2012, 7(1): 118-127. [12]JIN G, JEONG Y, YOON B. Technology-driven roadmaps for identifying new product/market opportunities: Use of text mining and quality function deployment[J]. Advanced Engineering Informatics, 2015, 29(1): 126-138. [13]JOUNG J, KIM K. Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data[J]. Technological Forecasting and Social Change, 2017, 114: 281-292. [14]李凡, 鲁明羽, 陆玉昌. 关于文本特征抽取新方法的研究[J]. 清华大学学报(自然科学版), 2001, 41(7): 98-101. LI Fan, LU Mingyu, LU Yuchang. Research about new methods of text feature extraction[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(7): 98-101. [15]宋晓雷, 王素格, 李红霞, 等.基于概率潜在语义分析的词汇情感倾向判别[J]. 中文信息学报, 2011, 25(2): 89-93. SONG Xiaolei, WANG Suge, LI Hongxia, et al. Word sentiment orientation discrimination based on PLSA[J]. Journal of Chinese Information Processing, 2011, 25(2): 89-93. [16]DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407. [17]HOFMANN T. Probabilistic latent semantic analysis[DB/OL]. (2013-01-23).http:∥arxiv.org/abs/1301.6705. [18]李宁, 罗文娟, 庄福振, 等.基于MapReduce的并行PLSA算法及在文本挖掘中的应用[J]. 中文信息学报, 2015, 29(2): 79-86. LI Ning, LUO Wenjuan, ZHUANG Fuzhen, et al. MapReduce based parallel probabilistic latent semantic analysis for text mining[J]. Journal of Chinese Information Processing, 2015, 29(2): 79-86. [19]HUANG J Y, HSU H T. Technology-function matrix based network analysis of cloud computing[J]. Scientometrics, 2017, 113(1): 17-44. [20]KIM G, BAE J. A novel approach to forecast promising technology through patent analysis[J]. Technological Forecasting and Social Change, 2017, 117: 228-237. [21]WANG H, CHI Y, HSIN P. Constructing patent maps using text mining to sustainably detect potential technological opportunities[J]. Sustainability, 2018, 10(10): 3729. [22]LIU K, YEN Y, KUO Y H. A quick approach to get a technology-function matrix for an interested technical topic of patents[J]. International Journal of Arts and Commerce, 2013, 2(6): 85-96. [23]TRAPPEY A J C, TRAPPEY C V, WANG T M, et al. Ontology-based technology function matrix for patent analysis of additive manufacturing in the dental industry[J]. International Journal of Manufacturing Research, 2017, 12(1): 64-82. [24]TARP M, FRIIS T, OLSEN P, et al. Automated reduction of statistical errors in the estimated correlation function matrix for operational modal analysis[J]. Mechanical Systems and Signal Processing, 2019, 132: 790-805. [25]PAKES A, SCHANKERMAN M. The rate of obsolescence of patents, research gestation lags, and the private rate of return to research resources[M]∥R&D, patents, and productivity. Chicago: University of Chicago Press, 1984: 73-88. [26]REITZIG M. What determines patent value? Insights from the semiconductor industry[J]. Research Policy, 2003, 32(1): 13-26. [27]BAKKER J. The log-linear relation between patent citations and patent value[J]. Scientometrics, 2017, 110(2): 879-892. [28]BESSEN J, NEUHUSLER P, TURNER J L, et al. Trends in private patent costs and rents for publicly-traded United States firms[J]. International Review of Law and Economics, 2018, 56: 53-69. [29]HILLER R S, SAVAGE S J, WALDMAN D M. Using aggregate market data to estimate patent value: An application to United States smartphones 2010 to 2015[J]. International Journal of Industrial Organization, 2018, 60: 1-31. [30]MA J, PORTER A L. Analyzing patent topical information to identify technology pathways and potential opportunities[J]. Scientometrics, 2015, 102: 811-827. [31]GINTING G, FADLINA, MESRAN, et al. Technical approach of TOPSIS in decision making[J]. International Journal of Recent Trends in Engineering & Research, 2017, 3(8): 58-64. [32]HEGDE D, LUO H. Patent publication and the market for ideas[J]. Management Science, 2018, 64(2): 652-672. [33]HARRIGAN K R, DI GUARDO M C, MARKU E. Patent value and the Tobin’s Q ratio in media services[J]. The Journal of Technology Transfer, 2018, 43(1): 1-19. [34]VAN RAAN A F J. Patent citations analysis and its value in research evaluation: A review and a new approach to map technology-relevant research[J]. Journal of Data and Information Science, 2017, 2(1): 13-50. [35]万小丽, 朱雪忠.专利价值的评估指标体系及模糊综合评价[J]. 科研管理, 2008, 29(2): 185-191. WAN Xiaoli, ZHU Xuezhong. The indicator system and fuzzy comprehensive evaluation of patent value[J]. Science Research Management, 2008, 29(2): 185-191. [36]孙玉艳, 张文德.企业专利量化评估系统的设计与实现[J]. 现代图书情报技术, 2009, 25(11): 64-68. SUN Yuyan, ZHANG Wende. Design and implementation of evaluation system of enterprise patent value[J]. New Technology of Library and Information Service, 2009, 25(11): 64-68. [37]HWANG C L, YOON K. Methods for multiple attribute decision making[M]∥Multiple attribute decision making. Berlin, Heidelberg: Springer, 1981: 58-191. [38]CHEN C T. Extensions of the TOPSIS for group decision-making under fuzzy environment[J]. Fuzzy Sets and Systems, 2000, 114(1): 1-9. [39]JAHANSHAHLOO G R, LOTFI F H, IZADIKHAH M. Extension of the TOPSIS method for decision-making problems with fuzzy data[J]. Applied Mathematics and Computation, 2006, 181(2): 1544-1551. [40]BISWAS P, PRAMANIK S, GIRI B C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment[J]. Neural Computing and Applications, 2016, 27(3): 727-737. [41]Clarivate. Manual code lookup [EB/OL]. [2020-03-05]. http:∥ips.clarivate.com/cgi-bin/mc/displaycode.cgi. |
[1] | 胡桓铭, 杨帆, 章俊良. La0.95FeO3-δ/C复合电极制备工艺对氧还原和氧析出催化性能的影响[J]. 上海交通大学学报, 2021, 55(9): 1049-1057. |
[2] | 牛伟龙,莫蓉,孙惠斌,韩周鹏. 基于光滑粒子流体动力学方法与TANH本构方程的钛合金切屑形态预测[J]. 上海交通大学学报, 2019, 53(5): 624-632. |
[3] | 周苏,胡哲,高扬,姜缜. 基于晶格化的动力学Monte Carlo方法研究钛酞菁配合物氧化还原反应催化能力[J]. 上海交通大学学报(自然版), 2019, 53(4): 497-503. |
[4] | 刘亚风,王新杰,陆飞,王炅. 基于PLZT/PVDF复合驱动的光控微镜平移机构[J]. 上海交通大学学报(自然版), 2018, 52(7): 837-844. |
[5] | 吴松波,蔡振兵,林禹,王璋,刘新龙,朱旻昊. 沙粒粒径对TC4钛合金冲击界面损伤行为的影响[J]. 上海交通大学学报(自然版), 2018, 52(5): 568-574. |
[6] | 李星亮1,2,岳文1,3,庞长涛2,徐昌语2,康嘉杰1,3,田斌1,4. 渗氮处理对表面织构化钛在月壤介质中 摩擦磨损性能的影响[J]. 上海交通大学学报(自然版), 2018, 52(5): 561-567. |
[7] | 周苏,姜缜,DE LILE J R. 基于密度泛函理论的过渡金属酞菁配合物氧还原反应催化能力[J]. 上海交通大学学报(自然版), 2017, 51(12): 1422-1427. |
[8] | 王春晓,李祥,罗云. 多孔钛合金支架结构设计及其抗压强度分析[J]. 上海交通大学学报(自然版), 2016, 50(02): 165-168. |
[9] | 杨文杰,温亚林,张武高. Pt/Ba/Ce/γ-Al2O3催化剂H2-NSR性能影响因素的试验分析[J]. 上海交通大学学报(自然版), 2015, 49(05): 583-589. |
[10] | 李振华1,马彩云1,华晨2,程先华2,3. 等径角挤压工艺对Ti5553合金冲蚀磨损性能的影响[J]. 上海交通大学学报(自然版), 2015, 49(01): 37-43. |
[11] | 孔艳平,刘金喜. 铌镁酸铅-钛酸铅单晶/压电双层结构材料中SH波的传播特性[J]. 上海交通大学学报(自然版), 2014, 48(09): 1323-1328. |
[12] | 李德立,陈晓玲,吴娇,覃萍,张武高. H2为还原剂的钙钛矿类催化剂存储还原NOx试验[J]. 上海交通大学学报(自然版), 2013, 47(11): 1778-1782. |
[13] | 翟茜茜,胡国新,唐波. 石墨烯杂化钛酸管复合光催化剂的制备与表征[J]. 上海交通大学学报(自然版), 2013, 47(05): 811-816. |
[14] | 方磊1,徐颖1,2,程先华1,3. 钛合金表面稀土碳纳米管薄膜制备及其摩擦磨损性能分析[J]. 上海交通大学学报(自然版), 2013, 47(05): 740-743. |
[15] | 刘斌1, 2,冉海琼1,李章朋2,王金清2,杨生荣2. 聚多巴胺对氧化处理后钛合金表面沉积羟基磷灰石的影响[J]. 上海交通大学学报(自然版), 2013, 47(05): 795-799. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||