上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (6): 599-606.doi: 10.16183/j.cnki.jsjtu.2020.99.006
牛志华,苑璨,孔得宇
出版日期:
2020-06-28
发布日期:
2020-07-03
通讯作者:
牛志华(1976-),女,山西省晋中市人,副教授,主要研究方向为序列密码.
电话(Tel.):021-66135387;E-mail:zhniu@shu.edu.cn.
基金资助:
NIU Zhihua,YUAN Can,KONG Deyu
Online:
2020-06-28
Published:
2020-07-03
摘要: 周期序列的线性复杂度及其稳定性是序列密码评价的重要度量指标.k-错线性复杂度是线性复杂度稳定性的一个重要评价指标.然而,目前对于大部分周期序列(除周期为2n、pn、2pn外),尚无有效的算法求解其k-错线性复杂度.因此,本文提出了一种混合的遗传算法来近似计算任意周期序列的k-错线性复杂度.采用轮盘赌、最优保留策略、两点交叉和单点随机变异,并引入自适应算子来调整交叉概率和变异概率,以保证遗传算法的收敛性.通过并行计算适应度函数来提高算法的效率,同时与模拟退火算法相结合,加速算法收敛并避免早熟.结果表明:当k<8且周期小于256时,k-错线性复杂度的实验值仅比精确值高8%.
中图分类号:
牛志华, 苑璨, 孔得宇. 计算周期序列k-错线性复杂度的混合遗传算法[J]. 上海交通大学学报, 2020, 54(6): 599-606.
NIU Zhihua, YUAN Can, KONG Deyu. A Hybrid Genetic Algorithm for Computing the k-Error Linear Complexity of Periodic Sequences[J]. Journal of Shanghai Jiaotong University, 2020, 54(6): 599-606.
[1]MASSEY J. Shift-register synthesis and BCH decoding[J]. IEEE Transaction on Information Theory, 1969, 15(1): 122-127. [2]GAMES R, CHAN A. A fast algorithm for determining the complexity of a binary sequence with period 2n[J]. IEEE Transaction on Information Theory, 1983, 29(1): 144-146. [3]KE P H, CHANG Z L. On the error linear complexity spectrum of binary sequences with period of power of two[J]. Chinese Journal of Electronics, 2015, 24(2): 366-372. [4]ZHOU J, LIU W. The k-error linear complexity distribution for 2n-periodic binary sequences[J]. Designs Codes and Cryptography, 2014, 73(1): 55-75. [5]PAN W, BAO Z, LIN D, et al. The distribution of 2n-periodic binary sequences with fixed k-error linear complexity[C]∥International Conference on Information Security Practice and Experience. Zhangjiajie, China: Springer, 2016: 13-36. [6]TANG M, ZHU S. On the error linear complexity spectrum of pn-periodic binary sequences[J]. Applicable Algebra in Engineering Communication and Computing, 2013, 24(6): 497-505. [7]LI F L, ZHU S, HU H, et al. Determining the k-error joint linear complexity spectrum for a binary multisequence with period pn[J]. Cryptography and Communications, 2016, 8(4): 513-523. [8]TANG M. An algorithm for computing the error sequence of pn-periodic binary sequences[J]. Applicable Algebra in Engineering, Communication and Computing, 2014, 25(3): 197-212. [9]ZHOU J. On the k-error linear complexity of sequences with period 2pn over GF (q)[J]. Designs Codes and Cryptography, 2011, 58(3): 279-296. [10]YU F W, SU M, WANG G, et al. Error decomposition algorithm for approximating the k-error linear complexity of periodic sequences[C]∥Trustcom/BigDataSE/ISPA. Tianjin, China: IEEE, 2016: 505-510. [11]NIU Z, CHEN Z, DU X. Linear complexity problems of level sequences of Euler quotients and their related binary sequences[J]. Science China Information Sciences, 2016, 59(3): 1-12. [12]LIU L F, YANG X Y, DU X N, et al. On the linear complexity of new generalized cyclotomic binary sequences of order two and period pqr[J]. Tsinghua Science and Technology, 2016, 21(3): 295-301. [13]ZHAO C, MA W, YAN T, et al. Linear complexity of least significant bit of polynomial quotients[J]. Chinese Journal of Electronics, 2017, 26(3): 573-578. [14]CHEN Z, NIU Z, WU C. On the k-error linear complexity of binary sequences derived from polynomial quotients[J]. Science China Information Sciences, 2015, 58(9): 1-15. [15]LIU L, YANG X, DU X, et al. On the k-error linear complexity of generalised cyclotomic sequences[J]. International Journal of High Performance Computing and Networking, 2016, 9(5/6): 394-400. [16]ALECU A, SALAGEAN A. A genetic algorithm for computing the k-error linear complexity of cryptographic sequences [C]∥IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007: 3569-3576. [17]SRINIVAS M, PATNAIK L. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems Man and Cybernetics, 1994, 24(4): 656-667. [18]HERDA M. Parallel genetic algorithm for capacitated p-median problem [J]. Procedia Engineering, 2017, 192: 313-317. [19]LAN S, LIN W. Genetic algorithm optimization research based on simulated annealing [C]∥International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Shanghai, China: IEEE, 2016: 491-494. [20]PENG Y, LUO X, WEI W. A new fuzzy adaptive simulated annealing genetic algorithm and its convergence analysis and convergence rate estimation[J]. International Journal of Control Automation and Systems, 2014, 12(3): 670-679. |
[1] | 闫青, 鲁建厦, 江伟光, 邵益平, 汤洪涛, 李英德. 考虑双端口布局的紧致化仓储系统堆垛机路径优化[J]. 上海交通大学学报, 2022, 56(7): 858-867. |
[2] | 周天颜, 冯小恩, 范云锋, 董诗音, 李玉庆, 金慧中. 避免防空火力过剩的地面兵力防御部署优化模型[J]. 空天防御, 2022, 5(4): 19-23. |
[3] | 王箫剑, 洪君, 陈晶华, 李鸿光. 基于参数化建模和响应面优化的箱体减重研究[J]. 空天防御, 2022, 5(4): 60-66. |
[4] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[5] | 陶海红, 闫莹菲. 一种基于GA-CNN的网络化雷达节点遴选算法[J]. 空天防御, 2022, 5(1): 1-5. |
[6] | 周宇泰, 徐岳, 李宇, 蒋国韬. 基于遗传算法的干扰态势下三维雷达网优化布站方法[J]. 空天防御, 2022, 5(1): 52-59. |
[7] | 李翠明, 王宁, 张晨. 基于改进遗传算法的光伏板清洁分级任务规划[J]. 上海交通大学学报, 2021, 55(9): 1169-1174. |
[8] | 顾一凡, 赵文龙, 唐善军, 杨擎宇, 郑鑫. 分布式主/被动成像探测系统目标空间协同定位方法研究[J]. 空天防御, 2021, 4(4): 119-126. |
[9] | 卓鹏程, 严瑾, 郑美妹, 夏唐斌, 奚立峰. 面向滚动轴承全生命周期故障诊断的GA-OIHF Elman神经网络算法[J]. 上海交通大学学报, 2021, 55(10): 1255-1262. |
[10] | 王金凤, 陈璐, 杨雯慧. 考虑设备可用性约束的单机调度问题[J]. 上海交通大学学报, 2021, 55(1): 103-110. |
[11] | 康俊涛, 张亚州, 秦世强. 基于一种混合智能算法的有限元模型修正多解问题[J]. 上海交通大学学报, 2020, 54(6): 652-660. |
[12] | 戴少怀, 王磊, 李旻, 余科, 罗晨. 基于遗传算法的SVM自适应干扰样式选择[J]. 空天防御, 2020, 3(2): 59-64. |
[13] | 姚来鹏, 侯保林, 刘曦. 采用摩擦补偿的弹药传输机械臂自适应终端滑模控制[J]. 上海交通大学学报, 2020, 54(2): 144-151. |
[14] | 高云凯, 马超, 刘哲, 田林雳. 基于NSGA-III的白车身焊装生产平台的离散拓扑优化[J]. 上海交通大学学报, 2020, 54(12): 1324-1334. |
[15] | 施振兴, 管再升, 王磊, 施臣钢, 伍彬. 基于遗传算法的自动驾驶仪参数多目标优化研究[J]. 空天防御, 2020, 3(1): 41-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||