[1]XU X H, ZHU D H, ZHANG H Y, et al. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2368-2382.
[2]SUN Y, GIBLIN D J, KAZEROUNIAN K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1): 204-210.
[3]MARQUEZ J J, PEREZ J M, RIOS J, et al. Process modeling for robotic polishing[J]. Journal of Materials Processing Technology, 2005, 159(1): 69-82.
[4]TIAN F J, LI Z G, LV C, et al. Polishing pressure investigations of robot automatic polishing on curved surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1/2/3/4): 639-646.
[5]NORBERTO PIRES J, RAMMING J, RAUCH S, et al. Force/torque sensing applied to industrial robotic deburring[J]. Sensor Review, 2002, 22(3): 232-241.
[6]SONG Y X, LIANG W, YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing, 2012, 23(5): 1903-1913.
[7]HUANG H, GONG Z M, CHEN X Q, et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Materials Processing Technology, 2002, 127(2): 140-145.
[8]JUNG S, HSIA T C, BONITZ R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 474-483.
[9]ZHANG Q W, HAN L L, XU F, et al. Research on velocity servo-based hybrid position/force control scheme for a grinding robot[J]. Advanced Materials Research, 2012, 490/491/492/493/494/495: 589-593.
[10]MARCHAL P C, SORNMO O, OLOFSSON B, et al. Iterative learning control for machining with industrial robots[J]. IFAC Proceedings Volumes, 2014, 47(3): 9327-9333.
[11]TAO Y, ZHENG J, LIN Y, et al. Fuzzy PID control method of deburring industrial robots[J]. Journal of Intelligent & Fuzzy Systems, 2015, 29(6): 2447-2455.
[12]ZHANG S, LEI M, DONG Y, et al. Adaptive neural network control of coordinated robotic manipulators with output constraint[J]. IET Control Theory & Applications, 2016, 10(17): 2271-2278.
[13]ELBESTAWI M A, YUEN K M, SRIVASTAVA A K, et al. Adaptive force control for robotic disk grinding[J]. CIRP Annals, 1991, 40(1): 391-394.
[14]SRNMO O, OLOFSSON B, ROBERTSSON A, et al. Increasing time-efficiency and accuracy of robotic machining processes using model-based adaptive force control[J]. IFAC Proceedings Volumes, 2012, 45(22): 543-548.
[15]SONG Y X, YANG H J, HONGBO L. Intelligent control for a robot belt grinding system[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 716-724.
[16]韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M].北京: 国防工业出版社, 2008: 243-280.
HAN Jingqing. Active disturbance rejection control technique-the technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008: 243-280.
[17]万磊, 张英浩, 孙玉山, 等. 欠驱动智能水下机器人的自抗扰路径跟踪控制[J]. 上海交通大学学报, 2014, 48(12): 1727-1731.
WAN Lei, ZHANG Yinghao, SUN Yushan, et al. ADRC path-following control of underactuated AUVs[J]. Journal of Shanghai Jiao Tong University, 2014, 48(12): 1727-1731.
[18]ZHU D H, XU X H, YANG Z Y, et al. Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments[J]. Tribology International, 2018, 120: 93-98.
[19]MENDES N, NETO P. Indirect adaptive fuzzy control for industrial robots: A solution for contact applications[J]. Expert Systems with Applications, 2015, 42(22): 8929-8935.
[20]PATNAIK DURGUMAHANTI U S, SINGH V, VENKATESWARA RAO P. A new model for grinding force prediction and analysis[J]. International Journal of Machine Tools and Manufacture, 2010, 50(3): 231-240.
[21]WERNER G. Influence of work material on grinding forces[J]. Annals of the CIRP, 1978, 27(1): 243-248.
[22]GAO Z. Active disturbance rejection control: A paradigm shift in feedback control system design[C]//2006 American Control Conference. Minneapolis, MN, USA: IEEE, 2006: 9047186.
[23]ZHENG Q, GAO L Q, GAO Z Q. On stability ana-lysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]//2007 46th IEEE Conference on Decision and Control. New Orleans, LA, USA: IEEE, 2008: 9885774. |