上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (4): 376-386.doi: 10.16183/j.cnki.jsjtu.2020.04.006
李春祥,张浩怡
出版日期:
2020-04-28
发布日期:
2020-04-30
通讯作者:
李春祥(1964-),男,安徽省舒城县人,教授,博士生导师,主要研究结构抗震与风工程、结构振动控制、人工智能与结构健康监测.电话(Tel.):13512129922;E-mail:li-chunxiang@vip.sina.com.
基金资助:
LI Chunxiang,ZHANG Haoyi
Online:
2020-04-28
Published:
2020-04-30
摘要: 传感器布置不足和传感器数据缺失是风压实测研究中需要解决的重要问题,风压的空间预测可以恢复缺失数据和拓展风压空间信息,帮助建立结构表面的风压分布.为此提出一种基于多变量经验模态分解(MEMD)和极限学习机(ELM)的空间预测算法.采用MEMD分解非平稳信号,得到多组模态数目相同且频率匹配的固有模态函数和余项.对分解得到的数据按频率进行重组,作为输入数据,用ELM进行学习和预测.采用基于自回归滑动平均的模拟风速数据和实测非平稳风压数据来验证算法的有效性和精确度,同时引入基于径向基核函数的最小二乘支持向量机(RBF-LSSVM)和ELM方法作为对比.试验结果表明,MEMD-ELM方法的预测结果误差更小,与真实值更为接近.MEMD的多变量同时分解可以保留数据间的相关性,从而在非平稳过程空间预测时达到更好的效果,是一种稳定而有效的多变量预测方法.
中图分类号:
李春祥, 张浩怡. 基于混合多变量经验模态分解和极限学习机的非平稳过程预测[J]. 上海交通大学学报, 2020, 54(4): 376-386.
LI Chunxiang, ZHANG Haoyi. Hybridizing Multivariate Empirical Mode Decomposition and Extreme Learning Machine to Predict Non-Stationary Processes[J]. Journal of Shanghai Jiao Tong University, 2020, 54(4): 376-386.
[1]张慧超. 基于LSSVM风压分布预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. ZHANG Huichao. Research on the prediction of wind pressure distribution based on LSSVM[D]. Harbin: Harbin Institute of Technology, 2015. [2]HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. [3]LIU H, TIAN H Q, LI Y F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms[J]. Energy Conversion & Management, 2015, 100: 16-22. [4]YANG D, YANG K. Multi-step prediction of strong earthquake ground motions and seismic responses of SDOF systems based on EMD-ELM method[J]. Soil Dynamics & Earthquake Engineering, 2016, 85: 117-129. [5]PENG T, ZHOU J Z, ZHANG C, et al. Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine[J]. Energy Conversion & Management, 2017, 153: 589-602. [6]LI S, WANG P, GOEL L. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine[J]. Electric Power Systems Research, 2015, 122: 96-103. [7]张永康, 李春祥, 郑晓芬, 等.基于混合人工蜂群和人工鱼群优化的LSSVM脉动风速预测[J].振动与冲击, 2017, 36(15): 203-209. ZHANG Yongkang, LI Chunxiang, ZHENG Xiaofen, et al. Fluctuating wind velocity forecasting of hybridizing artificial bee colony and artificial fish swarm optimization based LSSVM [J]. Journal of Vibration and Shock, 2017, 36(15): 203-209. [8]REHMAN N, MANDIC D P. Multivariate empirical mode decomposition[J]. Proceedings of the Royal Society, 2010(488): 1291-1392. [9]HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995. [10]王尊. 多变量经验模态分解在化工过程故障诊断中的应用研究[D]. 北京: 北京化工大学, 2015. WANG Zun. Application research on multivariate empirical mode decomposition in chemical process fault diagnosis[D]. Beijing: Beijing University of Chemical Technology, 2015. [11]HE K, ZHA R, WU J, et al. Multivariate EMD-based modeling and forecasting of crude oil price[J]. Sustainability, 2016, 8(4): 387. [12]LOONEY D, GOVERDOVSKY V, KIDMOSE P, et al. Subspace denoising of EEG artefacts via multivariate EMD[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014: 4688-4692. [13]中华人民共和国交通部. 公路斜拉桥设计细则:JTG/T D65-01-2007[S]. 北京:人民交通出版社, 2007. Ministry of Communications of the People’s Republic of China. Guidelines for design of highway cable-stayed bridge: JTG/T D65-01-2007[S]. Beijing: China Communications Press, 2007. [14]张志宏, 刘中华, 董石麟. 强台风作用下大跨空间索桁体系现场风压风振实测研究[J]. 上海师范大学学报(自然科学版), 2013, 42(5): 546-550. ZHANG Zhihong, LIU Zhonghua, DONG Shilin. Study on wind vibration and wind pressure of long-pan space cable-truss system under strong typhoon[J]. Journal of Shanghai Normal University (Natural Sciences), 2013, 42(5): 546-550. |
[1] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[2] | 李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013. |
[3] | 段红燕, 唐国鑫, 盛捷, 曹孟杰, 裴磊, 田宏伟. 一种新型的疲劳强度预测模型[J]. 上海交通大学学报, 2022, 56(6): 801-808. |
[4] | 姜俊豪, 陈刚. 驾驶机器人转向操纵的动态模型预测控制方法[J]. 上海交通大学学报, 2022, 56(5): 594-603. |
[5] | 王子垚, 郭凤祥, 陈俐. 基于外推高斯过程回归方法的发动机排放预测[J]. 上海交通大学学报, 2022, 56(5): 604-610. |
[6] | 许勇, 蔡云泽, 宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报, 2022, 56(3): 267-278. |
[7] | 田若岑, 张庆振, 郭云鹤, 程林. 基于禁飞区规避的高超声速飞行器再入制导律设计[J]. 空天防御, 2022, 5(2): 65-74. |
[8] | 陈志鑫, 汪怡平, 杨亚锋, 苏建军, 杨斌. 不同送风方式下大客车内飞沫传播特性研究[J]. 上海交通大学学报, 2022, 56(11): 1532-1540. |
[9] | 沈阳武, 宋兴荣, 罗紫韧, 沈非凡, 黄晟. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293. |
[10] | 沈慧, 刘世民, 许敏俊, 黄德林, 鲍劲松, 郑小虎. 面向加工领域的数字孪生模型自适应迁移方法[J]. 上海交通大学学报, 2022, 56(1): 70-80. |
[11] | 张亮, 屈刚, 李慧星, 金皓纯. 智能电网电力监控系统网络安全态势感知平台关键技术研究及应用[J]. 上海交通大学学报, 2021, 55(S2): 103-109. |
[12] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50. |
[13] | 巩伟峥, 许凌, 姚寅. 计及风速分布与机组惯量转化不确定性的风电场可用惯量估计[J]. 上海交通大学学报, 2021, 55(S2): 51-59. |
[14] | 王岩, 陈耀然, 韩兆龙, 周岱, 包艳. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086. |
[15] | 周小宇, 李红霞, 黄一. C11集装箱船参数横摇运动极值响应分析[J]. 上海交通大学学报, 2021, 55(8): 984-989. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 357
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||