上海交通大学学报(自然版) ›› 2019, Vol. 53 ›› Issue (4): 431-437.doi: 10.16183/j.cnki.jsjtu.2019.04.006
杜陈阳,孔庆帅,赵亦希,于忠奇
出版日期:
2019-04-28
发布日期:
2019-04-28
通讯作者:
于忠奇,男,副教授,博士生导师,电话(Tel.):021-34206785;E-mail:yuzhq@sjtu.edu.cn.
作者简介:
杜陈阳(1995-),男,硕士生,江苏省南通市人,主要研究方向为旋压理论及其工艺技术.
基金资助:
DU Chenyang,KONG Qingshuai,ZHAO Yixi,YU Zhongqi
Online:
2019-04-28
Published:
2019-04-28
摘要: 为了探究现有的起皱评价方法对薄壁球面构件普旋法兰起皱发生时刻预测的精确性,以 2024-O 铝合金球面薄壁构件第一道次普旋为研究对象,通过试验方法确定了2024-O铝合金旋压法兰起皱发生时刻,同时结合数值仿真手段,基于现有的起皱评价方法分别得出了2024-O铝合金旋压法兰起皱发生时刻的结果.研究结果表明:法兰几何波动法和基于塑性失稳的理论模型可以正确地预测法兰起皱发生时刻,前者预测误差达到125%,后者误差为77%;旋压力法可以预测法兰严重起皱时刻,但无法定量预测起皱发生时刻;弹性应变能振荡法对上述两种起皱问题均无法预测.
中图分类号:
杜陈阳,孔庆帅,赵亦希,于忠奇. 薄壁球面构件普旋法兰起皱预测方法评价[J]. 上海交通大学学报(自然版), 2019, 53(4): 431-437.
DU Chenyang,KONG Qingshuai,ZHAO Yixi,YU Zhongqi. Evaluation of Flange Wrinkling Prediction Methods of Conventional Spinning for Thin-Walled Spherical Components[J]. Journal of Shanghai Jiaotong University, 2019, 53(4): 431-437.
[1]XIA Q, XIAO G, LONG H, et al. A review of process advancement of novel metal spinning[J]. International Journal of Machine Tools and Manu-facture, 2014, 85: 100-121. [2]ZHAN M, YANG H, GUO J, et al. Review on hot spinning for difficult-to-deform lightweight metals[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1732-1743. [3]詹梅, 李志欣, 高鹏飞, 等.铝合金大型薄壁异型曲面封头旋压成形研究进展[J].机械工程学报, 2018(9): 86-96. ZHAN Mei, LI Zhixin, GAO Pengfei, et al. Advances in spinning of aluminum alloy large-sized thin-walled and special-curved surface head[J]. Journal of Mechanical Engineering, 2018(9): 86-96. [4]ZHANG Y, SHAN D, XU W, et al. Study on spinning process of a thin-walled aluminum alloy vessel head with small ratio of thickness to diameter[J]. Journal of Manufacturing Science and Engineering, 2010, 132(1): 014504. [5]ZHAN M, YANG H, ZHANG J H, et al. 3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning[J]. Journal of Materials Processing Technology, 2007, 186: 486-491. [6]XIA Q, SHIMA S, KOTERA H, et al. A study of the one-path deep drawing spinning of cups[J]. Journal of Materials Processing Technology, 2005, 159(3): 397-400. [7]KLEINER M, GBEL R, KANTZ H, et al. Combined methods for the prediction of dynamic instabilities in sheet metal spinning[J]. CIRP Annals-Manufacturing Technology, 2002, 51(1): 209-214. [8]SEBASTIANI G, BROSIUS A, EWERS R, et al. Numerical investigation on dynamic effects during sheet metal spinning by explicit finite-element-analysis[J]. Journal of Materials Processing Tech, 2006, 177(1-3): 401-403. [9]WANG L, LONG H, ASHLEY D, et al. Effects of the roller feed ratio on wrinkling failure in conventional spinning of a cylindrical cup[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011, 225(11): 1991-2006. [10]LIU C H. The simulation of the multi-pass and dieless spinning process[J]. Journal of materials processing technology, 2007, 192: 518-524. [11]WATSON M, LONG H. Wrinkling failure mechanics in metal spinning[J]. Procedia Engineering, 2014, 81: 2391-2396. [12]KONG Q S, YU Z Q, ZHAO Y X, et al. Theoretical prediction of flange wrinkling in first-pass conventional spinning of hemispherical part[J]. Journal of Materials Processing Technology, 2017, 246: 56-68. [13]LIU J H, YANG H, LI Y Q. A study of the stress and strain distributions of first-pass conventional spinning under different roller-traces[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 326-329. [14]ARAI H. Robotic metal spinning-shear spinning using force feedback control[C]//IEEE International Conference on Robotics and Automation. IEEE, 2003, 3: 3977-3983. [15]WANG L, LONG H. Investigation of material deformation in multi-pass conventional metal spinning[J]. Materials & Design, 2011, 32(5): 2891-2899. [16]万旭敏, 赵亦希, 孔庆帅, 等.旋压法兰起皱预测[J].上海交通大学学报, 2017, 51(11): 1312-1319. WAN Xumin, ZHAO Yixi, KONG Qingshuai, et al. Research on prediction of flange wrinkling in conventional spinning[J]. Journal of Shanghai Jiao Tong University, 2017, 51(11): 1312-1319. |
[1] | 李元辉, 李建军, 王顺超, 张珑耀, 朱文峰. 铝合金薄板含胶滚压成形工艺建模及实验[J]. 上海交通大学学报, 2022, 56(4): 532-542. |
[2] | 周宇, 赵勇, 于忠奇, 赵亦希. 交叉内筋薄壁筒体错距旋压成形数值仿真[J]. 上海交通大学学报, 2022, 56(1): 62-69. |
[3] | 何利华, 潘建峰, 倪敬, 冯凯, 崔智. 压铸铝合金用铣刀表面微织构及切削特性研究[J]. 上海交通大学学报, 2021, 55(6): 750-756. |
[4] | 杜慧敏,罗震,敖三三,张禹,郝志壮. 5052铝合金电阻点焊电极形状对电极寿命的影响[J]. 上海交通大学学报, 2019, 53(6): 708-712. |
[5] | 李雪龙,于忠奇,赵亦希,EVSYUKOV S A. 多道次普旋预成形阶段法兰起皱预测[J]. 上海交通大学学报, 2019, 53(11): 1375-1380. |
[6] | 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能[J]. 上海交通大学学报, 2019, 53(11): 1381-1388. |
[7] | 刘若凡, 于忠奇, 赵亦希, EVSYUKOV S A. 法兰约束条件下铝合金杯形件的旋压成形性能[J]. 上海交通大学学报, 2019, 53(1): 105-110. |
[8] | 王永光1,吴中华2,赵永武2,陈瑶1,刘萍2,陆小龙1,朱玉广1. 超声波协同作用下非离子表面活性剂 对铝合金抛光后清洗的影响[J]. 上海交通大学学报(自然版), 2018, 52(5): 582-586. |
[9] | 杨珂1,赵亦希1,冯昌文2,余志华2. 铝合金模压包边工艺尺寸设计方法[J]. 上海交通大学学报(自然版), 2018, 52(2): 182-187. |
[10] | 万旭敏,赵亦希,孔庆帅,于忠奇. 旋压法兰起皱预测[J]. 上海交通大学学报(自然版), 2017, 51(11): 1312-1319. |
[11] | 黄尊月,罗震,张禹,姚杞. 铝合金激光焊接变形测量[J]. 上海交通大学学报(自然版), 2015, 49(03): 326-328. |
[12] | 沈鸿源1,2,陈华斌2,林涛2,陈善本2. 应用于铝合金焊接中的被动视觉获取[J]. 上海交通大学学报(自然版), 2015, 49(03): 341-343. |
[13] | 李将川1,陈军1,陈劼实1,夏志永2,曾丹2. 考虑预应变与烘烤时效的流动应力模型[J]. 上海交通大学学报(自然版), 2013, 47(11): 1680-1684. |
[14] | 张克伟1,佘欢2,刘宏亮2,疏达2,王俊2. Si含量对高强高韧7050铝合金组织和力学性能的影响[J]. 上海交通大学学报(自然版), 2013, 47(11): 1712-1716. |
[15] | 周国伟a, 李大永a, b, 彭颖红a, b. 7075-T6高强度铝合金温热条件下的拉深成形性能[J]. 上海交通大学学报(自然版), 2012, 46(09): 1482-1486. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 421
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1004
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||