上海交通大学学报(自然版) ›› 2019, Vol. 53 ›› Issue (2): 239-246.doi: 10.16183/j.cnki.jsjtu.2019.02.016
马志宏,贡亮,林可,毛雨晗,吴伟,刘成良
出版日期:
2019-02-28
发布日期:
2019-02-28
通讯作者:
贡亮,男,副教授,博士生导师,电话(Tel.):021-34207061;E-mail:gongliang_mi@sjtu.edu.cn.
作者简介:
马志宏(1994-),男,甘肃省临夏回族自治州人,硕士生,从事植物图像表型测量研究.
基金资助:
MA Zhihong,GONG Liang,LIN Ke,MAO Yuhan,WU Wei,LIU Chengliang
Online:
2019-02-28
Published:
2019-02-28
摘要: 基于稻穗几何形态特征和在穗籽粒数二者之间的映射关系,提出基于稻穗图像形态学特征机器学习的在穗籽粒测量新方法.首先,利用图像处理方法提取一次枝梗的面积、骨架长度、周长、骨架距离均值等形态特征.其次,针对一次枝梗识别,提出基于局部距离方差的提取方法,获取一次枝梗骨架.最后,使用改进的支持向量机构建稻穗几何形态特征和在穗籽粒数两者之间的映射关系.实验结果表明,用以上特征训练的分类器,预测稻穗籽粒数的相对误差平均值为6.72%,可以有效解决测量在穗籽粒数时遇到的遮挡和粘连问题.研究结果表明,稻穗形态学特征与在穗籽粒数存在确定性内蕴映射关系,该映射能够被多分类集成支持向量机训练策略描述,且识别精度高于现有回归方法.
中图分类号:
马志宏,贡亮,林可,毛雨晗,吴伟,刘成良. 基于稻穗几何形态模式识别的在穗籽粒数估测[J]. 上海交通大学学报(自然版), 2019, 53(2): 239-246.
MA Zhihong,GONG Liang,LIN Ke,MAO Yuhan,WU Wei,LIU Chengliang. Estimation of Panicle Seed Number Based on Panicle Geometric Pattern Recognition[J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 239-246.
[1] | REBOLLEDO M C, PEA A L, JORGE D, et al. Combining image analysis, genome wide association studies and different field trials to reveal stable gene-tic regions related to panicle architecture and the number of spikelets per panicle in rice[J]. Frontiers in Plant Science, 2016, 7: 1384. |
[2] | WENG X, WANG L, WANG J, et al. Grain number, plant height, and heading date7 is a central re-gulator of growth, development, and stress response[J]. Plant Physiology, 2014, 164(2): 735. |
[3] | CROWELL S, FALCAO A X, SHAH A, et al. High-resolution inflorescence phenotyping using a novel image-analysis pipeline, panorama[J]. Plant Physiology, 2014, 165(2): 479-495. |
[4] | HUANG C L, YANG W N, DUAN L F, et al. Rice panicle length measuring system based on dual-camera imaging[J]. Computers & Electronics in Agriculture, 2013, 98: 158-165. |
[5] | GUO W, FUKATSU T, NINOMIYA S. Automated characterization of flowering dynamics in rice using field-acquired time-series rgb images[J]. Plant me-thods, 2015, 11(1): 7. |
[6] | MA Z, MAO Y, GONG L, et al. Smartphone-based visual measurement and portable instrumentation for crop seed phenotyping[J]. Ifac Papersonline, 2016, 49(16): 259-264. |
[7] | GRANIER C, AGUIRREZABAL L, CHENV K, et al. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensilivity to water deficit[J]. New Phytologist, 2006, 169(3): 623-635. |
[8] | ADAGALE S S, PAWAR S S. Image segmentation using PCNN and template matching for blood cell counting[C]//IEEE International Conference on Computational Intelligence and Computing Research. Madurai: IEEE, 2013: 1-5. |
[9] | 李小龙, 马占鸿, 孙振宇, 等.基于图像处理的小麦条锈病菌夏孢子模拟捕捉的自动计数[J]. 农业工程学报, 2013, 29(2): 199-206. |
LI Xiaolong, MA Zhanhong, SUN Zhenyu, et al. Automatic counting for trapped urediospores of Puccinia striiformis f. sp. tritici based on image processing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 199-206. | |
[10] | ALTAM F, ADAM H, ANJOS A D, et al. P-TRAP: A panicle trait phenotyping tool[J]. Bmc Plant Biology, 2013, 13(1): 122. |
[11] | 许杰, 周子力, 潘大宇, 等. 水稻穗部籽粒参数快速无损获取方法研究[J]. 计算机工程与应用, 2017, 53(8): 203-208. |
XU Jie, ZHOU Zili, PAN Dayu, et al. Study on fast and nondestructive method of rice grain parameters acquisition of rice panicle[J]. Computer Engineering and Applications, 2017, 53(8): 203-208. | |
[12] | 赵三琴, 李毅念, 丁为民, 等.稻穗结构图像特征与籽粒数相关关系分析[J]. 农业机械学报, 2014, 45(12): 323-328. |
ZHAO Sanqin, LI Yinian, DING Weimin, et al. Relative analysis between image characteristics of panicle structure and spikelet number[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 323-328. | |
[13] | SCHARR H, MINERVINI M, KLUKAS C, et al. Leaf segmentation in plant phenotyping: A collation study[J]. Machine Vision & Applications, 2016, 27(4): 1-22. |
[14] | NAVARRO P J, FERNANDO P, JULIA W, et al. Machine learning and computer vision system for phenotype data acquisition and analysis in plants[J]. Sensors, 2016, 16(5): 641. |
[15] | NASERI M, HEIDARI S, GHEIBI R, et al. A novel quantum binary images thinning algorithm: A quantum version of the Hilditch’s algorithm[J]. Optik-International Journal for Light and Electron Optics, 2017, 131: 678-686. |
[16] | MAJI S, BERG A C, MALIK J. Efficient classification for additive kernel svms[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(1): 66-77. |
[17] | YUAN M S, YANG Z J, HUANG G Z, et al. Feature selection by maximizing correlation information for integrated high-dimensional protein data[J]. Pattern Recognition Letters, 2017, 92: 17-24. |
[1] | 施裕升, 王晓科, 周宇泰, 蒋国韬, 徐天洋. 基于卡方检验与SVM的多雷达抗欺骗干扰方法[J]. 空天防御, 2022, 5(1): 108-114. |
[2] | 肖冉, 魏子清, 翟晓强. 基于支持向量机的办公建筑逐时能耗预测[J]. 上海交通大学学报, 2021, 55(3): 331-336. |
[3] | 朱东, 姜萍萍, 颜国正, 王志武, 韩玎, 赵凯, 华芳芳, 姚盛健, 丁紫凡, 周泽润. 人工肛门括约肌系统便意感知重建[J]. 上海交通大学学报, 2020, 54(8): 771-777. |
[4] | 陶正瑞, 党嘉强, 徐锦泱, 安庆龙, 陈明, 王力, 任斐. 基于支持向量机回归的曲面零件涡流测距标定方法[J]. 上海交通大学学报, 2020, 54(7): 674-681. |
[5] | 徐彬彬, 洪榛, 赵磊, 俞立. 网络化倒立摆系统的偏差攻击及其检测方法[J]. 上海交通大学学报, 2020, 54(7): 697-704. |
[6] | 胡晓强,仲训昱,张霄力,彭侠夫,何荧. 基于支持向量机辅助的四轴陀螺两级故障诊断方法[J]. 上海交通大学学报, 2020, 54(11): 1151-1156. |
[7] | 王江卓,徐文聪,李建勋,贺丰收,曹兰英,缪礼锋. 基于支持向量机的雷达电子支援措施系统点迹-航迹关联算法[J]. 上海交通大学学报, 2019, 53(9): 1091-1099. |
[8] | 李春祥,裴杨从琪,殷潇. 基于Hermite组合核EMD-WT-LSSVM的非平稳非高斯风压预测[J]. 上海交通大学学报, 2019, 53(10): 1249-1258. |
[9] | 李春祥,殷潇. 基于小波支持向量机的非高斯空间风压内外插预测[J]. 上海交通大学学报(自然版), 2018, 52(11): 1516-1523. |
[10] | 徐峰1,范春菊1,徐勋建2,李丽2,倪佳筠3. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报(自然版), 2018, 52(10): 1388-1395. |
[11] | 马天亮,徐添翼,高益,蔡萍. 基于支持向量机的热轧主电机风冷变频策略[J]. 上海交通大学学报(自然版), 2017, 51(5): 542-. |
[12] | 弓鹏伟1,费燕琼1,3,宋立博2. 基于多传感器信息融合的轮履混合移动机器人路况识别方法[J]. 上海交通大学学报(自然版), 2017, 51(4): 398-. |
[13] | 焦学军,张朕,姜劲,王春慧,杨涵钧,徐凤刚,曹勇,傅嘉豪. 基于功能性近红外光谱技术的脑机接口[J]. 上海交通大学学报(自然版), 2017, 51(12): 1456-1463. |
[14] | 罗华毅,王景成,杨丽雯,李肖城. 基于时差系数的城市原水需水量预测应用[J]. 上海交通大学学报(自然版), 2017, 51(10): 1260-1267. |
[15] | 王秀青1,侯增广2,曾慧3,吕锋1,潘世英1. 基于多传感器信息融合的机器人故障诊断[J]. 上海交通大学学报(自然版), 2015, 49(06): 793-798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||