[1]BERTONE G, HOOPER D, SILK J. Particle dark matter: Evidence, candidates and constraints[J]. Physics Reports, 2005, 405(5/6): 279-390.
[2]ZUREK K M. Asymmetric dark matter: Theories, signatures, and constraints[J]. Physics Reports, 2014, 537(3): 91-121.
[3]JUNGMAN G, KAMIONKOWSKI M, GRIEST K. Supersymmetric dark matter[J]. Physics Reports, 1996, 267(5/6): 195-373.
[4]TAN A, XIAO M, CUI X, et al. Dark matter results from first 98.7 day of data from the PandaX-II experiment[J]. Physical Review Letters, 2016, 117(12): 121303.
[5]AKERIB D S, ALSUM S, ARAJO H M, et al. Results from a search for dark matter in the complete LUX exposure[J]. Physical Review Letters, 2017, 118(2): 021303.
[6]CUI X, ABDUKERIM A, CHEN W, et al. Dark matter results from 54-ton-day exposure of PandaX-II experiment[J]. Physical Review Letters, 2017, 119(18): 181302.
[7]APRILE E, AALBERS J, AGOSTINI F, et al. First dark matter search results from the XENON1T experiment.[J]. Physical Review Letters, 2017, 119(18): 181301.
[8]FU C, CUI X, ZHOU X, et al. Spin-dependent weakly-interacting-massive-particle-nucleon cross section limits from first data of PandaX-II experiment[J]. Physical Review Letters, 2017, 118(7): 071301.
[9]FU C, ZHOU X, CHEN X, et al. Limits on axion couplings from the first 80 days of data of the PandaX-II experiment[J]. Physical Review Letters, 2017, 119(18): 181806.
[10]CHEN X, ABDUKERIM A, CHEN W, et al. Exploring the dark matter inelastic frontier with 79.6 days of PandaX-II data[J]. Physical Review D, 2017, 96(10): 102007.
[11]APRILE E, ARISAKA K, ARNEODO F, et al. Likelihood approach to the first dark matter results from XENON100[J]. Physical Review D, 2011, 84(5): 052003.
[12]READ A L. Presentation of search results: The CLs technique[J]. Journal of Physics G: Nuclear and Particle Physics, 2002, 28(10): 2693-2704.
[13]TAN A, XIAO X, CUI X, et al. Dark matter search results from the commissioning run of PandaX-II[J]. Physical Review D, 2016, 93(12): 122009.
[14]LEWIN J D, SMITH P F. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil[J]. Astro-particle Physics, 1996, 6(1): 87-112.
[15]APRILE E, DOKE T. Liquid xenon detectors for particle physics and astrophysics[J]. Reviews of Modern Physics, 2010, 82(3): 2053.
[16]GATES E I, GYUK G, TURNER M S. The local halo density[J]. The Astrophysical Journal, 1995, 449(2): L123-L126.
[17]COWAN G, CRANMER K, GROSS E, et al. Asymptotic formulae for likelihood-based tests of new physics[J]. The European Physical Journal C, 2011, 71(2): 1-19.
[18]BERNABEI R, BELLI P, CAPPELLA F, et al. Final model independent result of DAMA/LIBRA-phase1[J]. The European Physical Journal C, 2013, 73(12): 2648.
[19]SMITH D, WEINER N. Inelastic dark matter[J]. Physical Review D, 2001, 64(4): 043502.
[20]CHANG S, KRIBS G D, TUCKER-SMITH D, et al. Inelastic dark matter in light of DAMA/LIBRA[J]. Physical Review D, 2009, 79(4): 043513.
[21]BRAMANTE J, FOX P J, KRIBS G D, et al. In-elastic frontier: Discovering dark matter at high recoil energy[J]. Physical Review D, 2016, 94: 115026.
[22]LENARDO B, KAZKAZ K, MANALAYSAY A, et al. A global analysis of light and charge yields in li-quid xenon[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 3387-3396.
[23]AGOSTINELLI S, ALLISON J, AMAKO K, et al. GEANT4: A simulation toolkit [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303. |