[1]CALERO M, ALAMEDA-HERNANDEZ E, FERNNDEZ-SERRANO M, et al. Energy consumption reduction proposals for thermal systems in residential buildings[J]. Energy and Buildings, 2018, 175: 121-130.
[2]BRADY L, ABDELLATIF M. Assessment of energy consumption in existing buildings[J]. Energy and Buildings, 2017, 149: 142-150.
[3]NAWAZ K, SHEN B, ELATAR A, et al. Perfor-mance optimization of CO2 heat pump water heater[J]. International Journal of Refrigeration, 2018, 85: 213-228.
[4]AMER M, WANG C C. Review of defrosting me-thods[J]. Renewable & Sustainable Energy Reviews, 2017, 73: 53-74.
[5]刘业凤, 吴琪. 结霜机理及热泵除霜技术研究综述[J]. 节能技术, 2018, 36(3): 195-200.
LIU Yefeng, WU Qi. Review of frosting mechanism and heat pump defrosting technology[J]. Energy Conservation Technology, 2018, 36(3): 195-200.
[6]LIU Z B, FAN P Y, WANG Q H, et al. Air source heat pump with water heater based on a bypass-cycle defrosting system using compressor casing thermal storage[J]. Applied Thermal Engineering, 2018, 128: 1420-1429.
[7]HUANG D, LI Q X, YUAN X L. Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump[J]. Applied Energy, 2009, 86(9): 1697-1703.
[8]KIM J, CHOI H J, KIM K C. A combined dual hot-gas bypass defrosting method with accumulator heater for an air-to-air heat pump in cold region[J]. Applied Energy, 2015, 147: 344-352.
[9]HOFFENBECKER N, KLEIN S A, REINDL D T. Hot gas defrost model development and validation[J]. International Journal of Refrigeration, 2005, 28(4): 605-615.
[10]LIANG C H, ZHANG X S, LI X W, et al. Control strategy and experimental study on a novel defrosting method for air-source heat pump[J]. Applied Thermal Engineering, 2010, 30(8/9): 892-899.
[11]MINETTO S. Theoretical and experimental analysis of a CO2 heat pump for domestic hot water[J]. International Journal of Refrigeration, 2011, 34(3): 742-751.
[12]HU B, YANG D F, CAO F, et al. Hot gas defrosting method for air-source transcritical CO2 heat pump systems[J]. Energy and Buildings, 2015, 86: 864-872.
[13]HU B, WANG X L, CAO F, et al. Experimental analysis of an air-source transcritical CO2 heat pump water heater using the hot gas bypass defrosting method[J]. Applied Thermal Engineering, 2014, 71(1): 528-535.
[14]DING Y J, MA G Y, CHAI Q H, et al. Experiment investigation of reverse cycle defrosting methods on air source heat pump with TXV as the throttle regulator[J]. International Journal of Refrigeration, 2004, 27(6): 671-678.
[15]WANG W, XIAO J, FENG Y C, et al. Characteristics of an air source heat pump with novel photoelectric sensors during periodic frost-defrost cycles[J]. Applied Thermal Engineering, 2013, 50(1): 177-186.
[16]KIM M H, LEE K S. Determination method of defrosting start-time based on temperature measurements[J]. Applied Energy, 2015, 146: 263-269.
[17]GE Y J, SUN Y Y, WANG W, et al. Field test study of a novel defrosting control method for air-source heat pumps by applying tube encircled photo-electric sensors[J]. International Journal of Refrigeration, 2016, 66: 133-144.
[18]SONG M J, FAN C, MAO N, et al. An experimental study on time-based start defrosting control strategy optimization for an air source heat pump unit with frost evenly distributed and melted frost locally drained[J]. Energy and Buildings, 2018, 178: 26-37.
[19]沈维道, 童钧耕. 工程热力学[M]. 第4版. 北京: 高等教育出版社, 2007.
SHEN Weidao, TONG Jungeng. Engineering thermodynamics[M]. 4th ed. Beijing: Higher Education Press, 2007
[20]MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |