上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (7): 860-866.doi: 10.16183/j.cnki.jsjtu.2018.07.015
邵吉吉1,张旭1,2,3,苗同臣1,尚福林3
出版日期:
2018-07-28
发布日期:
2018-07-28
通讯作者:
张旭,男,讲师,电话(Tel.): 0371-67781865;E-mail: xuzhang@zzu.edu.cn.
基金资助:
SHAO Jiji,ZHANG Xu,MIAO Tongchen,SHANG Fulin
Online:
2018-07-28
Published:
2018-07-28
摘要: 应用基于位错密度的各向异性晶体塑性理论模型,分析了轴向压缩下Ni单晶微圆柱体的力学响应.将其与实验结果对比,验证了该理论模型的合理性.进而,以单滑移[123]取向Ni金属柱体的微压缩实验为研究对象,分析晶体取向、摩擦力、接触失配以及几何锥度等常见实验误差因素对其力学测试结果的影响.研究结果表明:在单滑移取向下,晶体取向偏差(2°)导致微圆柱体整体变形从单滑移向多滑移变形转变;受摩擦力影响的横向约束效应可以显著提高塑性应变硬化程度;接触失配导致弹性模量测试值偏低,同时使得塑性剪切滑移主方向发生显著改变;在有锥度(2°~5°)条件下,屈服应力值较无锥度情况偏低.
中图分类号:
邵吉吉1,张旭1,2,3,苗同臣1,尚福林3. 晶体塑性模型在微压缩实验误差分析中的应用[J]. 上海交通大学学报(自然版), 2018, 52(7): 860-866.
SHAO Jiji,ZHANG Xu,MIAO Tongchen,SHANG Fulin. Crystal Plasticity Model Apply to the Error Analysis of Microcompression Test[J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 860-866.
[1]庄茁, 崔一南, 高原, 等. 亚微米尺度晶体反常规塑性行为的离散位错研究进展[J]. 力学进展, 2011, 41(6): 647-667. ZHUANG Zhuo, CUI Yinan, GAO Yuan, et al. Advances in discrete dislocation mechanism on sub-micro crystal atypical plasticity[J]. Advances In Mechanics, 2011, 41(6): 647-667. [2]UCHIC M D, DIMIDUK D M, FLORANDO J N, et al. Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305: 986-989. [3]田琳, 付琴琴, 单智伟. 聚焦离子束在微纳尺度材料力学性能研究中的应用[J]. 中国材料进展, 2013, 32(12): 706-715. TIAN Lin, FU Qinqin, SHAN Zhiwei. Applications of focused ion beam in the study on mechanical pro-perties of micro/nanomaterials[J]. Materials China, 2013, 32(12): 706-715. [4]UCHIC M D, DIMIDUK D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing[J]. Materials Science and Engineering: A, 2005, 400: 268-278. [5]SPARKS G, PHANI P S, HANGEN U, et al. Spatiotemporal slip dynamics during deformation of gold micro-crystals[J]. Acta Materialia, 2017, 122: 109-119. [6]KONDORI B, NEEDLEMAN A, BENZERGA A A. Discrete dislocation simulations of compression of tapered micropillars[J]. Journal of the Mechanics and Physics of Solids, 2017, 101: 223-234. [7]LEE E H. Elastic-plastic deformation at finite strains[J]. Journal of Applied Mechanics, 1969, 36(1): 1-6. [8]PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in cry-stalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976. [9]HUTCHINON J W. Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 1976, 348: 101-127. [10]HARDER J. A crystallographic model for the study of local deformation processes in polycrystals[J]. International Journal of Plasticity, 1999, 15(6): 605-624. [11]叶诚辉, 魏啸, 陆皓. 基于位错密度的晶体塑性有限元方法的数值模拟及参数标定[J]. 材料导报, 2016, 30(4): 132-137. YE Chenghui, WEI Xiao, LU Hao. Numerical simulation of crystal plasticity finite element method based on dislocation density and parameter calibration[J]. Materials Review, 2016, 30(4): 132-137. [12]DEVINCRE B, HOC T, KUBIN L. Dislocation mean free paths and strain hardening of crystals[J]. Science, 2008, 320: 1745-1748. [13]DIMIDUK D M, UCHIC M D, PARTHASARATHY T A. Size-affected single-slip behavior of pure nickel microcrystals[J]. Acta Materialia, 2005, 53(15): 4065-4077. [14]ZHANG X, SHANG F. A continuum model for intermittent deformation of single crystal micropillars[J]. International Journal of Solids and Structures, 2014, 51(10): 1859-1871. [15]DIMIDUK D M, WOODWARD C, LESAR R, et al. Scale-free intermittent flow in crystal plasticity[J]. Science, 2006, 312: 1188-1190. [16]JUNG J H, NA Y S, CHO K M, et al. Microcompression behaviors of single crystals simulated by crystal plasticity finite element method[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2015, 46A(11): 4834-4840. [17]SHADE P A, WHEELER R, CHOI Y S, et al. A combined experimental and simulation study to exa-mine lateral constraint effects on microcompression of single-slip oriented single crystals[J]. Acta Materialia, 2009, 57(15): 4580-4587. [18]KORTE S, RITTER M, JIAO C, et al. Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars[J]. Acta Materialia, 2011, 59(19): 7241-7254. [19]SOLER R, MOLINA-ALDAREGUIA J M, SEGURADO J, et al. Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation[J]. International Journal of Plasticity, 2012, 36: 50-63. [20]ZHANG H, SCHUSTER B E, WEI Q, et al. The design of accurate micro-compression experiments[J]. Scripta Materialia, 2006, 54(2): 181-186. [21]UCHIC M D, SHADE P A, DIMIDUK D M. Plasticity of micrometer-scale single crystals in compression[J]. Annual Review of Materials Research, 2009, 39: 361-386. [22]SHAN Z W, MISHRA R K, ASIF S A S, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J]. Nature Materials, 2007, 7(2): 115-119. [23]OUYANG C, LI Z, HUANG M, et al. Combined influences of micro-pillar geometry and substrate constraint on microplastic behavior of compressed single-crystal micro-pillar: Two-dimensional discrete dislocation dynamics modeling[J]. Materials Science and Engineering: A, 2009, 526(1/2): 235-243. [24]GAO Y, LIU Z L, YOU X C, et al. A hybrid multiscale computational framework of crystal plasticity at submicron scales[J]. Computational Materials Science, 2010, 49(3): 672-681. [25]LEE J A, SEOK M Y, ZHAO Y K, et al. Statistical analysis of the size-and rate-dependence of yield and plastic flow in nanocrystalline copper pillars[J]. Acta Materialia, 2017, 127: 332-340. |
[1] | 王瑞, 胡志平, 殷珂, 马甲宽, 任翔. 黄土地区某铁路专用线路基动力响应规律[J]. 上海交通大学学报, 2022, 56(7): 908-918. |
[2] | 张培珍, 林芳. 开式呼吸蛙人专用氧气瓶声散射特性[J]. 上海交通大学学报, 2022, 56(6): 764-771. |
[3] | 马遵农, 张延松, 赵亦希. 多层箔片超声焊接的摩擦能量耗散机理及影响因素研究[J]. 上海交通大学学报, 2022, 56(6): 772-783. |
[4] | 张富有, 周强强, 杜鹏程. 参数空间变异性下坝基防渗墙地震反应[J]. 上海交通大学学报, 2022, 56(5): 684-692. |
[5] | 唐耿林, 李建军, 李元辉, 张珑耀, 朱文峰. 基于胶层填充的薄板包边成形数值模拟及实验研究[J]. 上海交通大学学报, 2022, 56(4): 523-531. |
[6] | 李元辉, 李建军, 王顺超, 张珑耀, 朱文峰. 铝合金薄板含胶滚压成形工艺建模及实验[J]. 上海交通大学学报, 2022, 56(4): 532-542. |
[7] | 贾米芝, 徐澧明, 林楠, 南博华, 王坤, 蔡登安, 周光明. 具有回弹复位功能易裂盖的结构设计及力学性能研究[J]. 空天防御, 2022, 5(2): 8-16. |
[8] | 齐建雄, 高 瀚, 雷 宇, 楚 飞, 赵春晖. 液压直驱式修井顶驱整机结构设计[J]. 海洋工程装备与技术, 2022, 9(2): 14-16. |
[9] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 基于有限元方法进行超高压海底管道弯矩研究 [J]. 海洋工程装备与技术, 2022, 9(2): 21-24. |
[10] | 祝捍皓, 肖瑞, 朱军, 唐骏. 浅海水平变化波导下低频声能量传输特性[J]. 上海交通大学学报, 2021, 55(8): 958-967. |
[11] | 张宇, 刘海亭, 翁琳, 沈耀. 环形缺口小冲杆试样结合内聚力模型提取断裂韧性参数[J]. 上海交通大学学报, 2021, 55(7): 850-857. |
[12] | 赵朋飞, 薛昕, 杨成. 模拟碱骨料反应引起的箍筋端部锚固退化对钢筋混凝土梁受剪性能的影响[J]. 上海交通大学学报, 2021, 55(6): 681-688. |
[13] | 郭德平, 李铮, 彭森林, 曾志凯, 吴岱峰. 基于Newmark隐式时间积分方案的裂纹动态扩展的数值计算方法[J]. 上海交通大学学报, 2021, 55(6): 689-697. |
[14] | 李晓凯, 赵亦希, 于忠奇, 朱宝行, 崔峻辉. 铝合金带筋构件超声辅助旋压仿真研究[J]. 上海交通大学学报, 2021, 55(4): 394-402. |
[15] | 谢肖礼, 庞木林, 邱辰, 覃石生. 上承式加V拱桥动力特性研究及试验验证[J]. 上海交通大学学报, 2021, 55(3): 276-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||