上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (7): 860-866.doi: 10.16183/j.cnki.jsjtu.2018.07.015
邵吉吉1,张旭1,2,3,苗同臣1,尚福林3
发布日期:
2018-07-28
通讯作者:
张旭,男,讲师,电话(Tel.): 0371-67781865;E-mail: xuzhang@zzu.edu.cn.
基金资助:
SHAO Jiji,ZHANG Xu,MIAO Tongchen,SHANG Fulin
Published:
2018-07-28
摘要: 应用基于位错密度的各向异性晶体塑性理论模型,分析了轴向压缩下Ni单晶微圆柱体的力学响应.将其与实验结果对比,验证了该理论模型的合理性.进而,以单滑移[123]取向Ni金属柱体的微压缩实验为研究对象,分析晶体取向、摩擦力、接触失配以及几何锥度等常见实验误差因素对其力学测试结果的影响.研究结果表明:在单滑移取向下,晶体取向偏差(2°)导致微圆柱体整体变形从单滑移向多滑移变形转变;受摩擦力影响的横向约束效应可以显著提高塑性应变硬化程度;接触失配导致弹性模量测试值偏低,同时使得塑性剪切滑移主方向发生显著改变;在有锥度(2°~5°)条件下,屈服应力值较无锥度情况偏低.
中图分类号:
邵吉吉1,张旭1,2,3,苗同臣1,尚福林3. 晶体塑性模型在微压缩实验误差分析中的应用[J]. 上海交通大学学报, 2018, 52(7): 860-866.
SHAO Jiji,ZHANG Xu,MIAO Tongchen,SHANG Fulin. Crystal Plasticity Model Apply to the Error Analysis of Microcompression Test[J]. Journal of Shanghai Jiao Tong University, 2018, 52(7): 860-866.
[1]庄茁, 崔一南, 高原, 等. 亚微米尺度晶体反常规塑性行为的离散位错研究进展[J]. 力学进展, 2011, 41(6): 647-667. ZHUANG Zhuo, CUI Yinan, GAO Yuan, et al. Advances in discrete dislocation mechanism on sub-micro crystal atypical plasticity[J]. Advances In Mechanics, 2011, 41(6): 647-667. [2]UCHIC M D, DIMIDUK D M, FLORANDO J N, et al. Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305: 986-989. [3]田琳, 付琴琴, 单智伟. 聚焦离子束在微纳尺度材料力学性能研究中的应用[J]. 中国材料进展, 2013, 32(12): 706-715. TIAN Lin, FU Qinqin, SHAN Zhiwei. Applications of focused ion beam in the study on mechanical pro-perties of micro/nanomaterials[J]. Materials China, 2013, 32(12): 706-715. [4]UCHIC M D, DIMIDUK D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing[J]. Materials Science and Engineering: A, 2005, 400: 268-278. [5]SPARKS G, PHANI P S, HANGEN U, et al. Spatiotemporal slip dynamics during deformation of gold micro-crystals[J]. Acta Materialia, 2017, 122: 109-119. [6]KONDORI B, NEEDLEMAN A, BENZERGA A A. Discrete dislocation simulations of compression of tapered micropillars[J]. Journal of the Mechanics and Physics of Solids, 2017, 101: 223-234. [7]LEE E H. Elastic-plastic deformation at finite strains[J]. Journal of Applied Mechanics, 1969, 36(1): 1-6. [8]PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in cry-stalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976. [9]HUTCHINON J W. Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 1976, 348: 101-127. [10]HARDER J. A crystallographic model for the study of local deformation processes in polycrystals[J]. International Journal of Plasticity, 1999, 15(6): 605-624. [11]叶诚辉, 魏啸, 陆皓. 基于位错密度的晶体塑性有限元方法的数值模拟及参数标定[J]. 材料导报, 2016, 30(4): 132-137. YE Chenghui, WEI Xiao, LU Hao. Numerical simulation of crystal plasticity finite element method based on dislocation density and parameter calibration[J]. Materials Review, 2016, 30(4): 132-137. [12]DEVINCRE B, HOC T, KUBIN L. Dislocation mean free paths and strain hardening of crystals[J]. Science, 2008, 320: 1745-1748. [13]DIMIDUK D M, UCHIC M D, PARTHASARATHY T A. Size-affected single-slip behavior of pure nickel microcrystals[J]. Acta Materialia, 2005, 53(15): 4065-4077. [14]ZHANG X, SHANG F. A continuum model for intermittent deformation of single crystal micropillars[J]. International Journal of Solids and Structures, 2014, 51(10): 1859-1871. [15]DIMIDUK D M, WOODWARD C, LESAR R, et al. Scale-free intermittent flow in crystal plasticity[J]. Science, 2006, 312: 1188-1190. [16]JUNG J H, NA Y S, CHO K M, et al. Microcompression behaviors of single crystals simulated by crystal plasticity finite element method[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2015, 46A(11): 4834-4840. [17]SHADE P A, WHEELER R, CHOI Y S, et al. A combined experimental and simulation study to exa-mine lateral constraint effects on microcompression of single-slip oriented single crystals[J]. Acta Materialia, 2009, 57(15): 4580-4587. [18]KORTE S, RITTER M, JIAO C, et al. Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars[J]. Acta Materialia, 2011, 59(19): 7241-7254. [19]SOLER R, MOLINA-ALDAREGUIA J M, SEGURADO J, et al. Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation[J]. International Journal of Plasticity, 2012, 36: 50-63. [20]ZHANG H, SCHUSTER B E, WEI Q, et al. The design of accurate micro-compression experiments[J]. Scripta Materialia, 2006, 54(2): 181-186. [21]UCHIC M D, SHADE P A, DIMIDUK D M. Plasticity of micrometer-scale single crystals in compression[J]. Annual Review of Materials Research, 2009, 39: 361-386. [22]SHAN Z W, MISHRA R K, ASIF S A S, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J]. Nature Materials, 2007, 7(2): 115-119. [23]OUYANG C, LI Z, HUANG M, et al. Combined influences of micro-pillar geometry and substrate constraint on microplastic behavior of compressed single-crystal micro-pillar: Two-dimensional discrete dislocation dynamics modeling[J]. Materials Science and Engineering: A, 2009, 526(1/2): 235-243. [24]GAO Y, LIU Z L, YOU X C, et al. A hybrid multiscale computational framework of crystal plasticity at submicron scales[J]. Computational Materials Science, 2010, 49(3): 672-681. [25]LEE J A, SEOK M Y, ZHAO Y K, et al. Statistical analysis of the size-and rate-dependence of yield and plastic flow in nanocrystalline copper pillars[J]. Acta Materialia, 2017, 127: 332-340. |
[1] | 李晓旺, 赵海涛, 陈吉安. 基于测点优选和改进L曲线法的动载荷识别[J]. 上海交通大学学报, 2020, 54(6): 569-576. |
[2] | 丁然,李强. 基于损伤累积模型的可靠度保守估计方法[J]. 上海交通大学学报, 2019, 53(10): 1225-1229. |
[3] | 郭大猷, 黄小平, 王芳. 有机玻璃观察窗的蠕变特性及数值模拟[J]. 上海交通大学学报, 2019, 53(5): 513-520. |
[4] | 陈明明, 陈秀华, 张大旭, 伍海辉, 郭洪宝, 龚景海. 平纹叠层SiC/SiC复合材料室温和高温拉伸行为与破坏机理[J]. 上海交通大学学报, 2019, 53(1): 11-18. |
[5] | 闫棣, 苏祺, 李四平. 屈曲问题有限元模拟的随机缺陷法[J]. 上海交通大学学报, 2019, 53(1): 19-25. |
[6] | 周胜,李兆霞. 含随机微裂纹的椭圆孔口应力分析[J]. 上海交通大学学报(自然版), 2016, 50(02): 272-277. |
[7] | 何仕玖,张晓晶,汪海. 含裂纹胶接金属加筋板的Ⅰ型应力强度因子求解[J]. 上海交通大学学报(自然版), 2016, 50(02): 251-256. |
[8] | 黄祥龙, 张晓晶, 白国娟, 徐武, 汪海. 基于裂纹尖端张开角准则的多裂纹薄壁结构剩余强度分析[J]. 上海交通大学学报(自然版), 2013, 47(04): 519-524. |
[9] | 孔艳平a, 陈长虹b, 刘金喜a. 正交各向异性弹性层/功能梯度压电半空间结构中Love波的传播[J]. 上海交通大学学报(自然版), 2013, 47(02): 210-215. |
[10] | 贾红学a, 龙丹冰a, 刘西拉b. 特大增量步算法在板分析中的应用[J]. 上海交通大学学报(自然版), 2013, 47(02): 187-192. |
[11] | 龙丹冰a, 刘西拉b. 针对基于广义逆的特大增量步算法的二维拓展[J]. 上海交通大学学报(自然版), 2012, 46(10): 1686-1692. |
[12] | 杨垂锦, 陈巨兵. 40Cr 钢 的 高 温 蠕 变 行 为 [J]. 上海交通大学学报(自然版), 2012, 46(02): 301-305. |
[13] | 李伟明, 洪嘉振. 基于频响函数的模型修正方法[J]. 上海交通大学学报(自然版), 2011, 45(10): 1455-1459. |
[14] | 翟三栋, 张扬, 李四平. 有纤维搭桥的矩形脱层屈曲[J]. 上海交通大学学报(自然版), 2011, 45(10): 1475-1478. |
[15] | 朱波, 周叮, 刘伟庆. 含脱层层合简支梁的屈曲模态[J]. 上海交通大学学报(自然版), 2011, 45(10): 1460-1464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||