上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (4): 469-473.doi: 10.16183/j.cnki.jsjtu.2018.04.012
郭拓1,2,王英民1,张立琛1
发布日期:
2025-07-01
GUO Tuo1,2,WANG Yingmin1,ZHANG Lichen1
Published:
2025-07-01
摘要: 针对传统信源数估计算法如基于Akaike信息论准则方法、最小描述长度准则方法及盖氏圆盘方法等存在低信噪比时性能下降甚至完全不能正确估计信源个数的问题,提出一种基于协方差矩阵特征向量之夹角联合密度函数的信源数估计方法.该方法采用样本协方差矩阵特征分解后噪声子空间的一特征向量与其他特征向量求夹角余弦,然后求这些特征向量之夹角余弦的联合概率密度函数值,最后将两相邻密度函数值相除与阈值比较确定信源个数.数值模拟与水池实验表明该方法在低信噪比时性能远远好于以往算法,在阵列信号处理中具有一定的应用价值.
中图分类号:
郭拓1,2,王英民1,张立琛1. 采用特征向量夹角联合概率密度函数的 信源个数估计方法[J]. 上海交通大学学报, 2018, 52(4): 469-473.
GUO Tuo1,2,WANG Yingmin1,ZHANG Lichen1. Source Number Estimation Based on Joint Probability Density Function of the Sample Eigenvectors[J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 469-473.
[1]YANG X P, LI S, HU X N, et al. Improved MDL method for estimation of source number at subarray level[J]. IEEE Electronics Letters, 2015, 52(1): 85-86. [2]HUANG L, LONG T, MAO E, et al. MMSE-based MDL method for robust estimation of number of sources without eigendecomposition[J]. IEEE Tran-sactions on Signal Processing, 2009, 57(10): 4135-4142. [3]LIU Y, HANG Z, LI J, et al. Blind source enume-ration based on Gerschgorin Disk Estimator and virtual array extension[C]∥2016 8th International Conference on Wireless Communications & Signal Processing. Yangzhou: IEEE, 2016: 1-4. [4]金芳晓, 邱天爽, 王鹏, 等. 基于l1稀疏正则化的信源个数估计新算法[J]. 通信学报, 2016, 37(10): 1-6. JIN Fangxiao, QIU Tianshuang, WANG Peng, et al. New source number estimation algorithm based on l1 sparse regularization[J]. Journal on Communications, 2016, 37(10): 1-6. [5]GUIMARES D A, SOARES P M, Souza R A A D. An empirical method for estimating the number of signal sources[J]. IEEE Latin America Transactions, 2015, 13(7): 2057-2064. [6]LU Z H, ABDELHAK M Z. Source enumeration in array processing using a two-step test[J]. IEEE Transactions on Signal Processing, 2015, 63(10): 2718-2727. [7]黄青华, 张翼飞, 刘凯. 一种新的基于EEF准则的空间声源个数估计算法[J]. 电子学报, 2016, 44(3): 687-692. HUANG Qinghua, ZHANG Yifei, LIU Kai. A novel spatial acoustic source enumeration algorithm based on EEF criterion[J]. Acta Electronica Sinica, 2016, 44(3): 687-692. [8]吴娜, 司伟建, 焦淑红, 等. 基于去特征处理的信源数估计算法[J]. 系统工程与电子技术, 2015, 37(3): 509-514. WU Na, SI Weijian, JIAO Shuhong, et al. New source number estimation method based on feature eliminated process[J]. Journal of Systems Engineering and Electronics, 2015, 37(3): 509-514. [9]QUIJANO J E, ZURK L M. An eigenvector-based test for local stationarity applied to array processing[J]. The Journal of the Acoustical Society of America, 2014, 135(6): EL277-EL283. [10]JUNG S, SEN A, MARRON J S. Boundary behavior in high dimension low sample size asymptotics of PCA[J]. Journal of Multivariate Analysis, 2012, 109(4): 190-203. [11]赵闪, 孙长瑜, 陈新华, 等. 一种改进的被动合成孔径算法用于舰船辐射噪声检测[J]. 电子与信息学报, 2013, 35(2): 426-431. ZHAO Shan, SUN Changyu, CHEN Xinhua, et al. An improved passive synthetic aperture sonar algorithm application for detecting of the ship radiated noise[J]. Journal of Electronics and Information Technology, 2013, 35(2): 426-431. |
[1] | 余华兵,郑恩明,陈新华. 基于相参累积预处理的空间谱估计方法[J]. 上海交通大学学报, 2020, 54(11): 1209-1217. |
[2] | 郑恩明1,黎远松2,陈新华1,余华兵1,孙长瑜1. 改进的最小方差无畸变响应波束形成方法[J]. 上海交通大学学报(自然版), 2016, 50(02): 188-193. |
[3] | 张维,杨士莪,黄益旺,宋扬. 基于微扰法的快速声速剖面反演[J]. 上海交通大学学报(自然版), 2013, 47(08): 1286-1291. |
[4] | 陈晓,李亚安,李余兴,蔚婧. 基于距离加权的概率数据关联机动目标跟踪算法[J]. 上海交通大学学报, 2018, 52(4): 474-479. |
[5] | 孙挺1,2,耿国华2,郑恩明3,王萍4. 基于子空间方位稳定性的弱目标检测方法[J]. 上海交通大学学报, 2018, 52(4): 480-487. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 37
|
|
|||||||||||||||||||||||||||||||||||||||||||||