上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (4): 474-479.doi: 10.16183/j.cnki.jsjtu.2018.04.013

• 学报(中文) • 上一篇    下一篇

基于距离加权的概率数据关联机动目标跟踪算法

陈晓,李亚安,李余兴,蔚婧   

  1. 西北工业大学 航海学院, 西安 710072
  • 基金资助:
    国家自然科学基金项目(51179157, 51409214, 11574250)

Maneuvering Target Tracking Algorithm Based on Weighted Distance of Probability Data Association

CHEN Xiao,LI Ya’an,LI Yuxing,YU Jing   

  1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

摘要: 为了提高杂波环境下机动目标跟踪的实时性和精确性,在概率数据关联算法的基础上,引入距离加权的概念,以区分来自于目标的量测概率和来自于杂波的虚假概率,在一定程度上提高了概率数据关联算法在密集杂波环境下的非机动目标的跟踪性能.针对机动目标的跟踪,提出了一种适用于密集杂波环境下的联合交互式多模型概率数据关联跟踪算法,该算法利用距离加权的概率数据关联算法进行滤波.模拟实验结果表明:该算法可以在一定程度上提高密集杂波环境下机动目标跟踪的性能,能够更加有效、可靠地实现机动目标跟踪的目的.

关键词: 机动目标跟踪, 交互式多模型, 概率数据关联算法, 联合交互式多模型概率数据关联算法

Abstract: In order to improve the accuracy of real-time tracking a maneuvering target in clutter, an improved probabilistic data association was proposed based on the weighted distance and using combined interactive multi-model probabilistic data association algorithm. The algorithm can enhance the probability from the target or decrease the probability from the clutter. The improved algorithm has better tracking performance in the dense clutter environment. The improved probabilistic data association algorithm is used as a filter. Simulation results show that the proposed algorithm can improve maneuvering target tracking performance in dense clutter, can also be more effective and reliable to realize maneuvering target tracking.

Key words: maneuvering target tracking, interactive multi-model(IMM), probabilistic data association (PDA) algorithm, combined interactive multiple model probabilistic data association (C-IMM-PDA) algorithm

中图分类号: