上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (4): 447-454.doi: 10.16183/j.cnki.jsjtu.2018.04.009
汪家梅1,苏豪展1,何琨2,张乐福1
发布日期:
2025-07-01
WANG Jiamei1,SU Haozhan1,HE Kun2,ZHANG Lefu1
Published:
2025-07-01
摘要: 通过慢应变速率拉伸和高温电化学试验相结合的方法,研究了外加电位对压水堆核电机组安全端 508III-52M-690合金异种材料焊接接头在含氯离子的高温高压水中应力腐蚀开裂(SCC)倾向的影响规律.结果表明,在温度为300℃高温高压水环境下,当氯离子的含量为50mg/kg、除氧时,焊接接头的SCC敏感性随电极电位升高而增大,即随着溶解氧浓度增加而增加.存在一个介于-500~-400mV(相对标准氢电极)的SCC临界电位,低于该电位时,焊接接头SCC敏感性较小,未见明显沿晶开裂,断裂为由力学性能主导的塑性开裂,与焊接接头不同冶金组织的硬度密切相关,硬度越低,越容易断裂,断裂位置均为硬度最低的52Mb处;高于临界电位时,SCC敏感性急剧增加,并出现明显的沿晶开裂和穿晶开裂断口,断裂为腐蚀主导的脆性开裂,断裂位置均为腐蚀性能最差的低合金钢 508III 热影响区.同时发现,焊接接头中52Mb对接焊和 508III 钢之间的热影响区对SCC最敏感.
中图分类号:
汪家梅1,苏豪展1,何琨2,张乐福1. 电位对508III-52M-690合金焊接接头应力腐蚀的影响[J]. 上海交通大学学报, 2018, 52(4): 447-454.
WANG Jiamei1,SU Haozhan1,HE Kun2,ZHANG Lefu1. Effects of Potential on 508III-52M-690 Dissimilar Weld Joint[J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 447-454.
[1]HWANG S S. Review of PWSCC and mitigation management strategies of Alloy 600 materials of PWRs[J]. Journal of Nuclear Materials, 2013, 443(1/2/3): 321-330. [2]SERIES I N E. Stress corrosion cracking in light water reactors: Good practices and lessons learned. No. NPT-3.13[M]. Vienna: International Atomic Energy Agency, 2011. [3]XU H, MAHMOUD S, NANA A, et al. A new modeling method for natural PWSCC cracking simulation in a dissimilar metal weld[J]. International Journal of Pressure Vessels and Piping, 2014, 116 (4): 20-26. [4]KANG S S, HWANG S S, KIM H P, et al. The experience and analysis of vent pipe PWSCC (primary water stress corrosion cracking) in PWR vessel head penetration[J]. Nuclear Engineering and Design, 2014, 269(4): 291-298. [5]DU D, CHEN K, YU L, et al. SCC crack growth rate of cold worked 316L stainless steel in PWR environment[J]. Journal of Nuclear Materials, 2015, 456: 228-234. [6]BOSCH R W, FRON D, CELIS J P, Electroche-mistry in light water reactors: Reference electrodes, measurement, corrosion and tribocorrosion issuesed[M]. New York: CRC Press, 2007. [7]ANDRESEN P L, MARTIN M M, AHLUWALIA K. SCC of alloy 690 and its weld metals in high temperature water[C]∥Busby J T, Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors. Cham: Springer, 2011: 161-178. [8]KANE R D. Slow strain rate testing for the evaluation of environmentally induced cracking[M]. Philadelphia: ASTM International, 1993. [9]BERTINI L, SANTUS C, VALENTINI R, et al. New high concentration-high temperature hydrogenation method for slow strain rate tensile tests[J]. Materials Letters, 2007, 61(11): 2509-2513. [10]MTHIS K, PRCHAL D, NOVOTN R, et al. Acoustic emission monitoring of slow strain rate tensile tests of 304L stainless steel in supercritical water environment[J]. Corrosion Science, 2011, 53(1): 59-63. [11]LONG B. DAI Y, BALUC N. Investigation of liquid LBE embrittlement effects on irradiated ferritic/martensitic steels by slow-strain-rate tensile tests[J]. Journal of Nuclear Materials, 2012, 431(1): 85-90. [12]彭德全, 胡石林, 张平柱, 等. 氧氯协同对304L不锈钢在高温高压硼锂水中应力腐蚀开裂的影响[J]. 稀有金属材料与工程, 2014, 43(1): 178-183. PENG Dequan, HU Shilin, ZHANG Pingzhu, et al. Effect of oxygen and chloride cooperation on stress corrosion cracking of 304L stainless steel in high temperature and high pressure water containing boric acid and lithium ion[J]. Rare Metal Materials and Engineering, 2014, 43(1): 178-183. [13]INDIG M E. 1990 speller award lecture: Technology transfer: Aqueous electrochemical measurements room temperature to 290 ℃[J]. Corrosion, 1990, 46(8): 680-686. [14]LIN C C, SMITH F R, ICHIKAWA N, et al. Electrochemical potential measurements under simulated BWR water chemistry conditions[J]. Corrosion, 1992, 48(1): 16-28. [15]SHOJI T, TAKAHASHI H, AIZAWA S, et al. Effects of sulfate contamination, sulfur in steel and strain rate on critical cracking potential for SCC of pressure vessel steels in pressurized high temperature waters[C]∥Theus G J. Proceedings of the Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems. Pennsylvania: The Metallurgical Society, Inc, 1988: 251-258. [16]ZHOU X Y, CHEN J. Stress corrosion cracking of iron base alloys in high temperature water[C]∥Theus G J. Proceedings of Eighth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems. Illinois: American Nuclear Society, 1997: 953-959. [17]ANDRESEN P L, YOUNG L M. Characterization of the roles of electrochemistry, convection and crack chemistry in stress corrosion cracking[C]∥Airey G, Andresen P, Brown J. Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors. Houston, TX: NACE, 1995: 579-596. [18]ANDRESEN P L, MORRA M M. IGSCC of non-sensitized stainless steels in high temperature water[J]. Journal of Nuclear Materials, 2008, 383: 97-111. [19]FORD F P. Quantitative prediction of environmentally assisted cracking[J]. Corrosion, 1996, 52(5): 375-395. |
[1] | 陆辉,沈朝,张乐福. 超临界水中310-ODS钢表面氧化膜形成机制和性能[J]. 上海交通大学学报(自然版), 2016, 50(04): 528-533. |
[2] | 汪家梅1,段振刚1,张乐福1,孟凡江2,石秀强2. 核电蒸汽发生器690合金管在高温高压水中的腐蚀电化学行为[J]. 上海交通大学学报(自然版), 2016, 50(04): 514-520. |
[3] | 陈凯,杜东海,张乐福. 690合金在压水堆环境中的腐蚀疲劳裂纹扩展行为[J]. 上海交通大学学报, 2017, 51(11): 1281-1286. |
[4] | 陈凯1,杜东海1,陆辉1,张乐福1,石秀强2,徐雪莲2. 690合金传热管疲劳裂纹扩展研究[J]. 上海交通大学学报(自然版), 2014, 48(11): 1639-1643. |
[5] | 杜东海1,陆辉1,陈凯1,张乐福1,石秀强2,徐雪莲2. 溶解氧对高温水中冷变形316L应力腐蚀开裂的影响规律[J]. 上海交通大学学报(自然版), 2014, 48(11): 1644-1649. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 47
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||