[1]MURUGESAN A, UMARANI C, SUBRAMANIAN R, et al. Bio-diesel as an alternative fuel for diesel engines—A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(3): 653-662.
[2]XUE J L. Combustion characteristics, engine performances and emissions of waste edible oil biodiesel in diesel engine[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 350-365.
[3]CAN O. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture[J]. Energy Conversion and Management, 2014, 87: 676-686.
[4]WANG W J, GOWDAGIRI S, OEHLSCHLAEGER M A. The high-temperature autoignition of biodiesels and biodiesel components[J]. Combustion and Flame, 2014, 161(12): 3014-3021.
[5]HERBINET O, BIET J, HAKKA M H, et al. Modeling study of the low-temperature oxidation of large methyl esters from C11 to C19[J]. Proceedings of the Combustion Institute, 2011, 33(1): 391-398.
[6]SAGGESE C, FRASSOLDATI A, CUOCI A, et al. A lumped approach to the kinetic modeling of pyrolysis and combustion of biodiesel fuels[J]. Proceedings of the Combustion Institute, 2013, 34(1): 427-434.
[7]BENJAMIN A K, JEFFREY M B. Structure-reacti-vity trends of C1-C4 alkanoic acid methyl esters[J]. Combustion and Flame, 2011, 158(6): 1037-1048.
[8]WESTBROOK C K, PITZ W J, WESTMORELAND P R, et al. A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 221-228.
[9]WAGNON S W, KARWAT D M A, WOOLDRIDGE M S, et al. Experimental and modeling study of methyl trans-3-Hexenoate autoignition[J]. Energy & Fuels, 2014, 28 (11): 7277-7234.
[10]ZHANG Y, BOEHMAN A L. Autoignition of binary fuel blends of n-heptane and C7 esters in a motored engine[J]. Combustion and Flame, 2012, 159(4): 1619-1630.
[11]YILMAZ N, VIGIL F M. Potential use of a blend of diesel, biodiesel, alcohols and vegetable oil in compression ignition engines[J]. Fuel, 2014, 124: 168-172.
[12]HAN D, GUANG H, YANG Z, et al. Effects of equivalence ratio and carbon dioxide concentration on premixed charge compression ignition of gasoline and diesel-like fuel blends[J]. Mechanical Science and Technology, 2013, 27(8): 2507-2512.
[13]LEE D, HOCHGREB S. Rapid compression machines: Heat transfer and suppression of corner vortex[J]. Combustion and Flame, 1998, 114(3/4): 531-545.
[14]TOGBE C, DAYMA G, MZE-AHMED A, et al. Experimental and modeling study of the kinetics of oxidation of simple biodiesel-biobutanol surrogates: Methyl octanoate-butanol mixtures[J]. Energy & Fuels, 2010, 24(7): 3906-3916.
[15]ZHANG K W, TOGBE C, DAYMA G, et al. Experimental and kinetic modeling study of trans-methyl-3-hexenoate oxidation in JSR and the role of C=C double bond[J]. Combustion and Flame, 2014, 161(3): 818-825.
[16]TANAKA S, AYALA F, KECK J C. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine[J]. Combustion and Flame, 2003, 133(4): 467-481.
[17]DOOLEY S, CURRAN H J, SIMMIE J M. Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate[J]. Combustion and Flame, 2008, 153(1/2): 2-32.
[18]DAYMA G, TOGBE C, DAGAUT P. Detailed kinetic mechanism for the oxidation of vegetable oil methyl esters: New evidence from methyl heptanoate[J]. Energy & Fuels, 2009, 23(9): 4254-4268.
[19]SARATHY S M, VRANCKX S, YASUNAGA K, et al. A comprehensive chemical kinetic combustion model for the four butanol isomers[J]. Combustion and Flame, 2012, 159(6): 2028-2055. |