上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (4): 429-436.doi: 10.16183/j.cnki.jsjtu.2018.04.007
刘积昊,闫维新,李培兴,潘根,赵言正
发布日期:
2025-07-01
基金资助:
LIU Jihao,YAN Weixin,LI Peixing,PAN Gen,ZHAO Yanzheng
Published:
2025-07-01
摘要: 提出了一种基于桥式放大机构的柔性薄膜致动器设计.该设计采用桥式放大机构提高致动器位移输出特性,利用并联耦合连杆机构降低输出漂移.采用理想模型和弹性梁理论,对薄膜致动器的运动学特性与形变位移模型建模,深入探究机构位移放大比和输出漂移误差.中心旋转对称式的机构拓扑构型,降低热变产生的寄生位移.通过ANSYS有限元模拟以及样机实验,验证致动器机构设计和位移放大比.采用MEMS工艺设计的样机,最大输出位移为50μm,位移放大比为23.设计参数满足约束要求时,机构输出位移大小只与并联输入位移的均值相关,径向位移不会因输入位移大小的差异产生.
中图分类号:
刘积昊,闫维新,李培兴,潘根,赵言正. 基于桥式放大机构的薄膜致动器设计[J]. 上海交通大学学报, 2018, 52(4): 429-436.
LIU Jihao,YAN Weixin,LI Peixing,PAN Gen,ZHAO Yanzheng. Design of the Film Actuator Based on Bridge-Type Mechanism[J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 429-436.
[1]CAZORLA P H, FUCHS O, COCHET M, et al. A low voltage silicon micro-pump based on piezoelectric thin films[J]. Sensors and Actuators A: Physical, 2016, 250: 35-39. [2]TANDON V, KANG W S, ROBBINS T A, et al. Microfabricated reciprocating micropump for intra-cochlear drug delivery with integrated drug/fluid sto-rage and electronically controlled dosing[J]. Lab on a Chip, 2016, 16(5): 829-846. [3]COBO A, SHEYBANI R, TU H, et al. A wireless implantable micropump for chronic drug infusion against cancer[J]. Sensors and Actuators A: Physical, 2016, 239: 18-25. [4]LINTEL H T G, POL F C M, BOUWSTRA S. A piezoelectric micropump based on micromachining of silicon[J]. Sensors and Actuators, 1988, 15(2): 153-167. [5]GRZEBYK T P, GRECKA-DRZAZGA A, DZIUBAN J A, et al. Micropump for generation and control of vacuum inside miniature devices[J]. Journal of Microelectromechanical Systems, 2014, 23(1): 50-55. [6]ZHANG Z, KAN J, CHENG G, et al. A piezoelectric micropump with an integrated sensor based on space-division multiplexing[J]. Sensors and Actuators A: Physical, 2013, 203: 29-36. [7]CONDE A J, BIANCHETTI A, VEIRAS F E, et al. A polymer chip-integrable piezoelectric micropump with low backpressure dependence[J]. RSC Advances, 2015, 5(62): 49996-50000. [8]ZHANG W, EITEL R E. An integrated multilayer ceramic piezoelectric micropump for microfluidic systems[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(13): 1637-1646. [9]WANG X Y, MA Y T, YAN G Y, et al. A compact and high flow-rate piezoelectric micropump with a folded vibrator[J]. Smart Materials and Structures, 2014, 23(11): 115005. [10]XU Y N, XIANG C C. Piezoceramic stack actuators for micropositioning stage[J].Key Engineering Materials, 2012, 512: 1337-1341. [11]QIN Y, SHIRINZADEH B, ZHANG D, et al. Design and kinematics modeling of a novel 3-DOF monolithic manipulator featuring improved Scott-Russell mechanisms[J]. Journal of Mechanical Design, 2013, 135(10): 101004. [12]QI K, XIANG Y, FANG C, et al. Analysis of the displacement amplification ratio of bridge-type mechanism[J]. Mechanism and Machine Theory, 2015, 87: 45-56. [13]BHAGAT U, SHIRINZADEH B, CLARK L, et al. Design and analysis of a novel flexure-based 3-DOF mechanism[J]. Mechanism and Machine Theory, 2014, 74: 173-187. [14]曲兴田, 董景石, 郭俊臣, 等. 基于柔性铰链放大的压电叠堆泵[J]. 吉林大学学报: 工学版, 2008, 38(3): 552-556. QU Xingtian, DONG Jingshi, GUO Junchen, et al. Piezoelectric stack pump based on flexure hinge magnification[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(3): 552-556. [15]LOBONTIU N, GARCIA E. Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms[J]. Computers & Structures, 2003, 81(32): 2797-2810. |
[1] | 郑钰馨,奚鹰,袁浪,卜王辉. 直齿轮纯扭转模型弹性动力学分析[J]. 上海交通大学学报(自然版), 2019, 53(3): 285-296. |
[2] | 徐川辉1,王旭永1,陶建峰1,张文俊1,苗中华2. 叶片马达凸轮转子过渡曲线特性分析[J]. 上海交通大学学报(自然版), 2014, 48(1): 1-5. |
[3] | 陈勇将,汤文成. 基于蠕滑理论的滚珠丝杠副摩擦力矩预测[J]. 上海交通大学学报(自然版), 2013, 47(09): 1335-1340. |
[4] | 吕林华, 杨德庆. 船舶钢-复合材料组合基座减振设计方法分析[J]. 上海交通大学学报(自然版), 2012, 46(08): 1196-1202. |
[5] | 曾飞1, 2, 陈光雄1, 周仲荣1. 缩比模型轮对与原型轮对过盈配合面微动幅值的相似关系[J]. 上海交通大学学报(自然版), 2012, 46(05): 729-733. |
[6] | 蒋倩倩,王家序,李俊阳,肖科,唐挺,王成. 双圆弧谐波传动齿廓参数对柔轮应力影响[J]. 上海交通大学学报, 2020, 54(2): 167-175. |
[7] | 王亚洲,胡赤兵,刘永平,邬再新,王保民. Pascal蜗线型齿轮滚切插补算法对比[J]. 上海交通大学学报(自然版), 2014, 48(1): 45-49. |
[8] | 赵君1,余海东2. 基于绝对节点坐标法的柔性双臂机构动力学分析[J]. 上海交通大学学报, 2017, 51(10): 1160-1165. |
[9] | 符升平,李胜波,罗宁. 基于图论的自动变速器拓扑变换和传动特性分析[J]. 上海交通大学学报, 2018, 52(3): 348-355. |
[10] | 杨德庆,张相闻,吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素[J]. 上海交通大学学报, 2018, 52(4): 379-387. |
[11] | 曹潇,李富才. 高铁轮对过盈配合下导波传播特性[J]. 上海交通大学学报, 2018, 52(8): 891-897. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||