上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (2): 207-213.doi: 10.16183/j.cnki.jsjtu.2018.02.013
张丹,王杰
发布日期:
2018-03-01
基金资助:
ZHANG Dan,WANG Jie
Published:
2018-03-01
摘要: 提出了一种混合供电型级联式不对称多电平逆变器.首先对该多电平逆变器的拓扑结构进行理论分析;然后以输出7电平为例,运用正负反相载波层叠脉宽调制方法和反馈控制相结合的方法,通过调整开关逻辑,控制电容电压稳定在期望值,从而达到输出为理想7电平的目的.最后在MATLAB模拟环境中搭建逆变和控制电路,通过仿真验证了所提出多电平逆变器拓扑结构和控制方法的有效性.
中图分类号:
张丹,王杰. 混合供电型不对称多电平逆变器的研究[J]. 上海交通大学学报, 2018, 52(2): 207-213.
ZHANG Dan,WANG Jie. An Asymmetry Cascaded Multilevel Inverter with Hybrid Power Supply[J]. Journal of Shanghai Jiao Tong University, 2018, 52(2): 207-213.
[1]NAMI A, LIANG J, DIJKHUIZEN F, et al. Modular multilevel converters for HVDC applications: Review on converter cells and functionalities[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 18-36. [2]WANG T, XU H, HAN J, et al. Cascaded Hbridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 7006-7018. [3]GUPTA K K, RANJAN A, BHATNAGAR P, et al. Multilevel inverter topologies with reduced device count: A review[J]. IEEE Transactions on Power Electronics, 2015, 31(1): 135-151. [4]BABAEI E, KANGARLU M F, SABAHI M. Extended multilevel converters: An attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters[J]. IET Power Electronics, 2014, 7(1): 157-166. [5]ADAM G P, ABDELSALAM I A, AHMED K H, et al. Hybrid multilevel converter with cascaded Hbridge cells for HVDC applications: Operating principle and scalability[J]. IEEE Transactions on Power Electronics, 2014, 30(1): 65-77. [6]CECATI C, CIANCETTA F, SIANO P. A multile-vel inverter for photovoltaic systems with fuzzy logic control[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 4115-4125. [7]ZHANG Y, ADAM G P, LIM T C, et al. Hybrid multilevel converter: Capacitor voltage balancing limits and its extension[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2063-2073. [8]VILLANUEVA E, CORREA P, RODRIGUEZ J, et al. Control of a single-phase cascaded H-bridge multilevel inverter for grid-connected photovoltaic systems[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4399-4406. [9]MARITHOZ S. Design and control of high-performance modular hybrid asymmetrical cascade multilevel inverters[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 4018-4027. [10]MOKHBERDORAN A, AJAMI A. Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6712-6724. [11]VARGAS R A, FIGUEROA A, DELEON S E, et al. Analysis of minimum modulation for the 9-level multilevel inverter in asymmetric structure[J]. IEEE Latin America Transactions, 2015, 13(9): 2851-2858. [12]SEPAHVAND H, LIAO J, FERDOWSI M, et al. Capacitor voltage regulation in single-DC-source cascaded H-bridge multilevel converters using phase-shift modulation[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3619-3626. [13]MARIETHOZ S. Systematic design of high-performance hybrid cascaded multilevel inverters with active voltage balance and minimum switching losses[J]. IEEE Transactions on Power Electronics, 2013, 28(7): 3100-3113. [14]张丹, 韩金刚, 汤天浩. FPGA 控制的不对称多电平逆变器的设计[J]. 电源学报, 2011 (4): 18-24. ZHANG Dan, HANG Jingang, TANG Tianhao. The research of a hybrid cascade asymmetrical multilevel inverter based on FPGA[J]. Journal of Power Supply, 2011 (4): 18-24. |
[1] | 杨晓辉1,2,张博2,杨威2,傅正财1. 500 kV六分裂导线舞动时的动张力变化特征[J]. 上海交通大学学报(自然版), 2014, 48(09): 1218-1224. |
[2] | 张翔1,程浩忠1,方陈2,张沈习1. 考虑主动管理模式的多目标分布式电源规划[J]. 上海交通大学学报(自然版), 2014, 48(09): 1231-1238. |
[3] | 王希晨1, 周学军1, 忽冉2, 樊诚1, 苗辉1. 海光缆远程供电系统可靠性研究 [J]. 上海交通大学学报(自然版), 2013, 47(03): 428-433. |
[4] | 朱磊, 马殿光, 王胜永, 史战果, 向琛, 张秀彬. 电网冰凌灾害的供电不间歇智能防控[J]. 上海交通大学学报(自然版), 2012, 46(07): 1131-1137. |
[5] | 马涌泉,邱洪兴. 大跨越输电塔线体系风振控制新策略[J]. 上海交通大学学报(自然版), 2014, 48(12): 1751-1759. |
[6] | 宋杰1,周健1,鲍伟1,黄文焘2,高翔3. 面向交-直流智能变电站运维专家系统的可扩展建模及其规则和隔离策略[J]. 上海交通大学学报, 2018, 52(9): 1072-1080. |
[7] | 王炜1,袁奇1,顾俊杰1,邰能灵2. X射线无损探伤技术在检测输电线路压接金具中的应用[J]. 上海交通大学学报, 2018, 52(10): 1189-1194. |
[8] | 吴倩红,韩蓓,冯琳,李国杰,江秀臣. “人工智能+”时代下的智能电网预测分析[J]. 上海交通大学学报, 2018, 52(10): 1206-1219. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 255
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 809
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||