上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (7): 769-773.
• 兵器工业 • 下一篇
张扬1,2,陈兵1,赵社戌1,李四平1
出版日期:
2017-07-31
发布日期:
2017-07-31
基金资助:
ZHANG Yang1,2,CHEN Bing1,ZHAO Shexu1,LI Siping1
Online:
2017-07-31
Published:
2017-07-31
Supported by:
摘要: 基于圆钢管粉煤灰混凝土短柱的轴压试验结果,经过回归分析和反复试算,提出了一种适用于有限元法分析的约束粉煤灰混凝土本构关系模型,并通过有限元法分析验证了其有效性.结果表明,所提出的模型不仅适用于圆钢管粉煤灰混凝土的有限元法分析,而且对普通圆钢管混凝土也具有较好的模拟效果.
中图分类号:
张扬1,2,陈兵1,赵社戌1,李四平1. 圆钢管粉煤灰混凝土短柱轴压试验的数值模拟[J]. 上海交通大学学报(自然版), 2017, 51(7): 769-773.
ZHANG Yang1,2,CHEN Bing1,ZHAO Shexu1,LI Siping1. Numerical Simulation of Axially Loaded Circular Steel Tubular
Stub Columns with Fly Ash Concrete Infill[J]. Journal of Shanghai Jiaotong University, 2017, 51(7): 769-773.
[1]ABDALLA S, ABED F, ALHAMAYDEH M. Behavior of CFSTs and CCFSTs under quasistatic axial compression[J]. Journal of Constructional Steel Research, 2013, 90: 235244. [2]KVEDARAS A K, SAUCIUVENAS G, KOMKA A, et al. Analysis of behaviour for hollow/solid concretefilled CHS steel beams[J]. Steel and Composite Structures, 2015, 19(2): 293308. [3]XIAO C Z, CAI S H, CHEN T, et al. Experimental study on shear capacity of circular concrete filled steel tubes[J]. Steel and Composite Structures, 2012, 13(5): 437449. [4]CHUNG K S, KIM J H, YOO J H. Experimental and analytical investigation of highstrength concretefilled steel tube square columns subjected to flexural loading[J]. Steel and Composite Structures, 2013, 14(2): 133153. [5]CHEN B, LIU X, LI S P. Performance investigation of square concretefilled steel tube columns[J]. Journal of Wuhan University of Technologymaterials Science Edition, 2011, 26(4): 730736. [6]ABED F, ALHAMAYDEH M, ABDALLA S. Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)[J]. Journal of Constructional Steel Research, 2013, 80: 429439. [7]EVIRGEN B, TUNCAN A, TASKIN K. Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression[J]. ThinWalled Structures, 2014, 80: 4656. [8]MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stressstrain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 18041826. [9] SUSANTHA K A S, GE H B, USAMI T. Uniaxial stressstrain relationship of concrete confined by various shaped steel tubes[J]. Engineering Structures, 2001, 23(10): 13311347. [10]GIAKOUMELIS G, LAM D. Axial capacity of circular concretefilled tube columns[J]. Journal of Constructional Steel Research, 2004, 60(7): 10491068. [11]韩林海. 钢管混凝土结构——理论与实践[M]. 2版. 北京: 科学出版社, 2007. [12]AYDIN S, YAZICI H, YIGITER H, et al. Sulfuric acid resistance of highvolume fly ash concrete[J]. Building and Environment, 2007, 42(2): 717721. [13]DINAKAR P, REDDY M K, SHARMA M. Behaviour of self compacting concrete using Portland pozzolana cement with different levels of fly ash[J]. Materials & Design, 2013, 46(4): 609616. [14]JIANG L H, LIU Z Q, YE Y Q. Durability of concrete incorporating large volumes of lowquality fly ash[J]. Cement and Concrete Research, 2004, 34(8): 14671469. [15]KAYALI O, AHMED S M. Assessment of high volume replacement fly ash concrete: Concept of performance index[J]. Construction and Building Materials, 2013, 39: 7176. [16]BILODEAU A, MALHOTRA M V. Highvolume fly ash system: Concrete solution for sustainable development[J]. ACI Materials Journal, 2000, 97(1): 4148. [17]DINAKAR P. Design of selfcompacting concrete with fly ash[J]. Magazine of Concrete Research, 2012, 64(5): 401409. [18]SIDDIQUE R. Properties of selfcompacting concrete containing class fly ash[J]. Materials & Design, 2011, 32(3): 15011507. [19]张扬, 李四平, 陈兵, 等. 粉煤灰活性激发剂的试验研究[J]. 混凝土, 2012 (9): 6364. ZHANG Yang, LI Siping, CHEN Bing, et al. Experimental study on the activators of fly ash[J]. Concrete, 2012 (9): 6364. [20]赵晶, 龚晓红. 高钙粉煤灰的开发应用[J]. 中国建材, 1995 (10): 3537. ZHAO Jing, GONG Xiaohong. Development and application of high calcium fly ash[J]. Building materials of China, 1995 (10): 3537. [21]卢方伟. 新型钢管混凝土构件的理论和试验研究[D]. 上海: 上海交通大学船舶海洋与建筑工程学院, 2007. |
[1] | 张培珍, 林芳. 开式呼吸蛙人专用氧气瓶声散射特性[J]. 上海交通大学学报, 2022, 56(6): 764-771. |
[2] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[3] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[4] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[5] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[6] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[7] | 张宇, 刘海亭, 翁琳, 沈耀. 环形缺口小冲杆试样结合内聚力模型提取断裂韧性参数[J]. 上海交通大学学报, 2021, 55(7): 850-857. |
[8] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[9] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[10] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[11] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[12] | 郑昌隆, 丁晓红, 沈洪, 赵利娟. 基于自适应成长法的舵面结构动力学拓扑优化设计方法研究[J]. 空天防御, 2021, 4(2): 7-. |
[13] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[14] | 王峰, 陈佳莉, 陈灯红, 范勇, 李志远, 何卫平. 基于滑动Kriging插值的EFG-SBM求解含侧边界的稳态热传导问题[J]. 上海交通大学学报, 2021, 55(11): 1483-1492. |
[15] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||