[1]HARTEN A. High resolution schemes for hyperbolic conservation laws [J]. Journal of Computational Physics, 1992, 33(3): 357393.
[2]SHU Chiwang. TVB uniformly highorder schemes for conservation laws [J]. Mathmatics Computation, 1987, 49(179): 105121.
[3]HARTEN A, OSHER S. Uniformly highorder accurate nonoscillatory schemeⅠ[J]. SIAM Journal on Numerical Analysis, 1987, 24(2): 279309.
[4]HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially nonoscillatory scheme Ⅲ [J]. Journal of Computational Physics, 1986, 71(2): 231303.
[5]SHU Chiwang, OSHER S. Efficient implementation of essentially nonoscillatory shock capturing schemes [J]. Journal of Computational Physics, 1988, 77(2): 439471.
[6]JIANG Guangshan, SHU Chiwang. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202228.
[7]COLELLA P, WOODWARD P R. The piecewise parabolic method (PPM) for gasdynamical simulations [J]. Journal of Computational Physics, 1984, 54(1): 174201.
[8]COLELLA P. Multidimensional upwind methods for hyperbolic conservation laws [J]. Journal of Computational Physics, 1990, 87(1): 171200.
[9]LI Hongxia, WANG Zhigang, MAO Dekang. Numerically neither dissipative nor compressive scheme for linear advection equation and its application to the Euler system [J]. Journal of Scientific Computing, 2008, 36(3): 285331.
[10]CHEN Rongsan, MAO Dekang. EntropyTVD scheme for nonlinear scalar conservation laws [J]. Journal of Scientific Computing, 2011, 47(2): 150169.
[11]Lagoutière F. Stability of reconstruction schemes for scalar hyperbolic conservations laws [J]. Communications in Mathematical Sciences, 2008, 6(1): 5770.
[12]Leveque R J. Finite volume methods for hyperbolic problem [M]. Cambridge: Cambridge University Press, 2002: 6485. |