上海交通大学学报(自然版) ›› 2016, Vol. 50 ›› Issue (04): 514-520.
汪家梅1,段振刚1,张乐福1,孟凡江2,石秀强2
收稿日期:
2015-04-09
出版日期:
2016-04-28
发布日期:
2016-04-28
基金资助:
WANG Jiamei1,DUAN Zhengang1,ZHANG Lefu1,MENG Fanjiang2,SHI Xiuqiang2
Received:
2015-04-09
Online:
2016-04-28
Published:
2016-04-28
摘要: 摘要: 通过模拟压水堆一回路水环境,研究了溶液温度(25~285 °C)和溶解氧(DO) (20 μg/L,2.1 mg/L,8.4 mg/L)对690合金电化学腐蚀行为的影响,及690合金在一回路水环境中的均匀腐蚀行为.极化曲线和光电子能谱的结果分析表明:随着溶液温度的升高,690合金的自腐蚀电位下降,自腐蚀电流密度增大,钝化区缩小;随着DO的升高,690合金的自腐蚀电位升高,自腐蚀电流密度降低,钝化区缩小;690合金在一回路水环境中的均匀腐蚀速率为0.244 mg/(dm2·h1/2),形成了外层富Fe、Cr和Ni的氢氧化物和内层富Fe、Cr和Ni的金属氧化物的氧化膜.
中图分类号:
汪家梅1,段振刚1,张乐福1,孟凡江2,石秀强2. 核电蒸汽发生器690合金管在高温高压水中的腐蚀电化学行为[J]. 上海交通大学学报(自然版), 2016, 50(04): 514-520.
WANG Jiamei1,DUAN Zhengang1,ZHANG Lefu1,MENG Fanjiang2,SHI Xiuqiang2. Electrochemical Corrosion Behaviors of Alloy 690 in High-Temperature and Highpressure Water[J]. Journal of Shanghai Jiaotong University, 2016, 50(04): 514-520.
[1]HUANG J, WU X. HAN E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in hightemperature alkaline environments [J]. Corrosion Science, 2010, 52(10): 34443452. [2]ABRAHAM G J, HAMBROO R B, KAIN V, et al. Electrochemical characterization of oxide film formed at high temperature on Alloy 690 [J]. Nuclear Engineering and Design, 2012, 243(2):6975. [3]CHEN Y Y, CHOU L B, SHIH H C. Effect of solution pH on the electrochemical polarization and stress corrosion cracking of Alloy 690 in 5M NaCl at room temperature[J]. Materials Science and Engineering: A, 2005, 396(1): 129137. [4]HUANG J, LIU X, HAN E H, et al. Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water[J]. Corrosion Science,2011, 53(10): 32543261. [5]SUN H, WU X, HAN E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water[J]. Corrosion Science, 2012, 59: 334342. [6]HUANG J, WU X, HAN E H. Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments[J]. Corrosion Science, 2009, 51(12): 29762982. [7]BETOVA I, BOJINOV M, KARASTOYANOV V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor[J]. Corrosion Science,2012, 58(5):2032. [8]GREELEY R S, SMITH Jr W T, STOUGHTON R W, et al. Electromotive force study in aqueous solutions at elevated temperatures. I.The standard potential of the silversilver chlotide electrode[J]. The Journal of Physical Chemistry,1960, 64(5):652657. [9]ASTM G103. Standard practice for preparing, cleaning, and evaluating corrosion test specimens[S]. 2003. [10]MACK J, SAJDL P, KUCˇERA P, et al. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water[J]. Electrochimica Acta, 2006, 51(17): 35663577. [11]BAZAN J C, ARVIA A J. The diffusion of ferroand ferricyanide ions in aqueous solutions of sodium hydroxide[J]. Electrochimica Acta,1965,10(10):10251032. [12]ROBERTSON J. The mechanism of high temperature aqueous corrosion of steel[J]. Corrosion Science,1989, 29(11):12751291. [13]EVANS U R. Mechanism of rusting[J]. Corrosion Science, 1969, 9(11): 813821. [14]ZIEMNIAK S E, HANSON M. Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water[J]. Corrosion Science,2006,48(2):498521. [15]HERMAS A A, SALAM M A, ALJUAID S S, et al. Electrosynthesis and protection role of polyaniline—polvinylalcohol composite on stainless steel[J]. Progress in Organic Coatings, 2014, 77(2): 403411. [16]LIU X, WU X, HAN E H. Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water[J]. Corrosion Science, 2012, 65(12):136144. [17]McIntyre N S, Cook M G. Xray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper[J]. Analytical Chemistry, 1975, 47(13): 22082213. [18]MACHET A, GALTAYRIES A, MARCUS P, et al. XPS study of oxides formed on nickelbase alloys in hightemperature and highpressure water[J]. Surface and Interface Analysis, 2002, 34(1): 197200. [19]ZIEMNIAK S E, HANSON M. Corrosion behavior of NiCrMo Alloy 625 in high temperature, hydrogenated water[J]. Corrosion Science,2003,45(7):15951618. [20]ZIEMNIAK S E, HANSON M, SANDER P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corrosion Science, 2008, 50(9): 24652477. [21]SUN H, WU X, HAN E H. Effects of temperature on the protective property, structure and composition of the oxide film on Alloy 625[J]. Corrosion Science,2009, 51(11): 25652572. [22]SUN H, WU X, HAN E H. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution[J]. Corrosion Science, 2009, 51(12): 28402847. [23]FENG Z, CHENG X, DONG C, et al. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel[J]. Journal of Nuclear Materials, 2010, 407(3): 171177. |
[1] | 汪家梅1,苏豪展1,何琨2,张乐福1. 电位对508III-52M-690合金焊接接头应力腐蚀的影响[J]. 上海交通大学学报, 2018, 52(4): 447-454. |
[2] | 陈凯,杜东海,张乐福. 690合金在压水堆环境中的腐蚀疲劳裂纹扩展行为[J]. 上海交通大学学报, 2017, 51(11): 1281-1286. |
[3] | 段振刚1,杜东海1,张乐福1,孟凡江2,石秀强2. 304和316L不锈钢的高温电化学腐蚀行为[J]. 上海交通大学学报(自然版), 2016, 50(02): 215-221. |
[4] | 陈凯1,杜东海1,陆辉1,张乐福1,石秀强2,徐雪莲2. 690合金传热管疲劳裂纹扩展研究[J]. 上海交通大学学报(自然版), 2014, 48(11): 1639-1643. |
[5] | 李永春, 周卫华, 杨燕华, 匡波, 程旭. REPEC非加热实验的RELAP程序模拟[J]. 上海交通大学学报(自然版), 2011, 45(03): 408-412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||