上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (08): 1220-1229.
梁晓磊,李文锋,张煜
收稿日期:
2014-07-14
出版日期:
2015-08-31
发布日期:
2015-08-31
基金资助:
湖北省国际合作项目(2011BFA012),国家自然科学基金项目(71372202),十二五科技支撑计划项目(2014BAH24F03),湖北省自然科学基金项目(2014CFB875)资助
LIANG Xiaolei,LI Wenfeng,ZAHNG Yu
Received:
2014-07-14
Online:
2015-08-31
Published:
2015-08-31
摘要:
摘要: 针对如何有效运用群智能算法求解多式联运问题,设计了一种针对群智能优化算法的个体解码方式,提出了一个有效的个体编码与多式联运方案的映射模型. 在该映射模型中设计了基于比例的流量分配方式,实现了个体编码信息向初步流量分配方式的解码;同时构建了局部流量调整策略,进行不可行方案修复,提高了解码方案的有效性. 而后,提出了一种变邻域粒子群算法,将社会网络演化特征引入进行粒子群算法的种群拓扑和邻域调整,以改善个体在搜索过程中的交互模式. 基于解码策略,采用改进算法对多式联运问题进行求解,并与3种新型群智能算法进行对比. 通过实例分析,该编码策略可以有效应用于多式联运问题求解. 同时,变邻域粒子群优化算法的收敛效率和性能优于对比算法.
中图分类号:
梁晓磊,李文锋,张煜. 一种求解带约束多式联运问题的群智能算法[J]. 上海交通大学学报(自然版), 2015, 49(08): 1220-1229.
LIANG Xiaolei,LI Wenfeng,ZAHNG Yu. A Novel Swarm Intelligence Optimization Algorithm for Solving Constrained Multimodal Transportation Planning[J]. Journal of Shanghai Jiaotong University, 2015, 49(08): 1220-1229.
[1]Bravo J J, Vidal C J. Freight transportation function in supply chain optimization models: A critical review of recent trends[J]. Expert Systems with Applications, 2013, 40(17):67426757.[2]Steadieseifi M, Dellaert N P, Nuijten W, et al. Multimodal freight transportation planning: A literature review[J]. European Journal of Operational Research,2014,233(1):115.[3]熊桂武,王勇.带时间窗的多式联运作业整合优化算法[J]. 系统工程学报,2011,26(3):379386.XIONG Guiwu, WANG Yong. Optimization algorithm of multimodal transportation with time window and job integration of multiagent[J]. Journal of System Engineering,2011,26(3):379386.[4]Zhang Mo, Bart Wiegmans, Lori Tavasszy. Optimization of multimodal networks including environmental costs: A model and findings for transport policy [J]. Computers in Industry,2013,64(2):136145.[5]Cho J, Kim H, Choi H. An intermodal transport network planning algorithm using dynamic programmingA case study: from Busan to Rotterdam in intermodal freight routing[J]. Applied Intelligence,2012,36(3):529541.[6]魏航,李军,魏洁. 时变条件下多式联运有害物品的路径选择[J].系统管理学报,2007,17(6): 644652.WEI Hang, LI Jun, WEI Jie. Routing for multimodal hazardous materials transportation in timevarying network[J]. Journal of Systems and Management,2007,17(6):644652.[7]Bai R, Kendall G, Qu R, et al. Tabu assisted guided local search approaches for freight service network design[J]. Information Sciences,2012,189(4):266281.[8]Van Der Weijde A H, Verhoef E T, Van Den Berg V a C. Competition in multimodal transport networks: A dynamic approach[J]. Transportation Research Part B: Methodological,2013,53(6):3144.[9]Liu Linzhong, Mu Haibo, Luo Haiyan, et al. A simulated annealing for multicriteria network path problems[J]. Computer & Operations Research,2012,39(12):33193135.[10]Zeng T, Hu D, Huang G. The transportation mode distribution of multimodal transportation in automotive logistics[C]∥COTA International Conference of Transportation Professionals. Shenzhen:Elsevier,2013:405417.[11]Takeyasu K, Kainosho M. Optimization technique by genetic algorithms for international logistics[J]. Journal of Intelligent Manufacturing,2014,25(5):10431049.[12]Hu Z H. A container multimodal transportation scheduling approach based on immune affinity model for emergency relief[J]. Expert Systems with Applications,2011,38(3):26322639.[13]Barcos L, Rodriguez V, Alvarez M, et al. Routing design for lessthantruckload motor carriers using ant colony optimization[J]. Transportation Research Part E,2010,46(3):367383.[15]Hedi A, Habbas Z, Khadraoui D. ACO for solving a multimodal transport problems using a transfer graph model[C]∥International Conference on Computers & Industrial Engineering. Troyes:IEEE, 2009:285290.[14]Ayed H, GalvezFernandez C, Habbas Z, et al. Solving timedependent multimodal transport problems using a transfer graph model[J]. Computers & Industrial Engineering,2011,61(2):391401.[16]Liang Xiaolei, Li Wenfeng, Zhang Yu, et al. An adaptive particle swarm optimization method based on clustering[J]. Soft Computing,2015,19(2):431448.[17]Kennedy J, Eberhart R. Particle swarm optimization[C]∥International Conference on Neural Networks. Perth:IEEE,1995:19421948.[18]Simon D. BiogeographyBased optimization[J]. IEEE Transactions on Evolutionary Computation, 2008,12(6):702713.[19]Yang X S. Firefly algorithm, stochastic test functions and design optimisation[J]. International Journal of BioInspired Computation,2010,2(2):7884.[20]Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization,2007,39(3):459471. |
[1] | 黄逸翔, 窦迅, 李林溪, 杨函煜, 于建成, 霍现旭. 基于全局灵敏度分析的综合能源设备响应价值量化方法[J]. 上海交通大学学报, 2025, 59(5): 569-579. |
[2] | 林森, 文书礼, 朱淼, 戴群, 鄢伦, 赵耀, 叶惠丽. 考虑碳交易机制的海港综合能源系统电-热混合储能优化配置[J]. 上海交通大学学报, 2024, 58(9): 1344-1356. |
[3] | 孙欣, 王思敏, 谢敬东, 江海林, 王森. 考虑多维影响因素的改进Transformer-PSO短期电价预测方法[J]. 上海交通大学学报, 2024, 58(9): 1420-1431. |
[4] | 林焰1, 2, 卞璇屹1, 董宗然3. 基于改进粒子群算法的船舶管路布局优化[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 737-746. |
[5] | 熊婧伊, 呼卫军, 殷玮, 张伟杰, 颜涛. 多弹集群协同优化决策算法研究[J]. 空天防御, 2024, 7(3): 86-93. |
[6] | 季煜恒, 李春通, 骆晓萌, 杨雪莲, 王德禹. 基于人因工程的船舶驾驶室人机界面布局优化设计[J]. 上海交通大学学报, 2024, 58(2): 201-210. |
[7] | 董德金, 范云锋, 蔡云泽. 一种具有必经点约束的非结构化环境路径规划方法[J]. 空天防御, 2024, 7(1): 71-80. |
[8] | 贾鲁生, 韦家耀, 艾尚茂. 缓波型钢悬链立管静态构型多目标粒子群优化分析[J]. 海洋工程装备与技术, 2023, 10(3): 132-137. |
[9] | 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138. |
[10] | 蔡晖, 高伯阳, 祁万春, 吴熙, 谢珍建, 黄俊辉. “双碳”背景下线间潮流控制器多目标协调控制策略[J]. 上海交通大学学报, 2021, 55(12): 1608-1618. |
[11] | 丘文桢, 宋兴宇, 张新曙. 基于代理模型的三立柱半潜平台多目标优化[J]. 上海交通大学学报, 2021, 55(1): 11-20. |
[12] | 赵建霞, 段海滨, 赵彦杰, 范彦铭, 魏晨. 基于鸽群层级交互的有人/无人机集群一致性控制[J]. 上海交通大学学报, 2020, 54(9): 973-980. |
[13] | 黄健,严胜刚. 未知声速下长基线系统定位修正算法[J]. 上海交通大学学报(自然版), 2019, 53(3): 366-372. |
[14] | 李春祥,裴杨从琪,殷潇. 基于Hermite组合核EMD-WT-LSSVM的非平稳非高斯风压预测[J]. 上海交通大学学报, 2019, 53(10): 1249-1258. |
[15] | 王庆, 刘钊, 黄平华, 朱平. 白车身激光焊接过程的变形预测及几何补偿方法[J]. 上海交通大学学报, 2019, 53(1): 62-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||