[1]Qin S. Statistical process monitoring: Basics and beyond[J]. Journal of Chemometrics, 2003, 17(89): 480502.[2]Cheng C, Hsu C, Chen M. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 22542262.[3]Ning C, Chen M, Zhou D. Hidden Markov model based statistics pattern analysis for multimode process monitoring: An indexswitching scheme[J]. Industrial & Engineering Chemistry Research, 2014, 53(27): 1108411095.[4]Zhou D, Li G, Qin S. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1): 168178. [5]Qin S. Survey on datadriven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220234.[6]Ge Z, Song Z, Gao F. Review of recent research on databased process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 35433562.[7]Yue H, Qin S. Reconstructionbased fault identification using a combined index[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 44034414.[8]Alcala C, Qin S. Reconstructionbased contribution for process monitoring[J]. Automatica, 2009, 45(7): 15931600.[9]Qin S, Zheng Y. Qualityrelevant and processrelevant fault monitoring with concurrent projection to latent structures[J]. AIChE Journal, 2013, 59(2): 496504.[10]Hao H, Zhang K, Ding S, et al. A datadriven multiplicative fault diagnosis approach for automation processes[J]. ISA Transactions, 2014, 53(5): 14361445.[11]Horn R, Johnson C. Matrix analysis[M]. [s.l.]: Cambridge University Press, 2012.[12]Li G, Qin S, Zhou D. Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 91759183. |