[1]Kandula V K. Fault detection in process control plants using principal component analysis [D]. India: VIT University, 2011.[2]GarciaAlvarez D. Fault detection using principal component analysis (PCA) in a wastewater treatment plant (WWTP) [C]∥Proceedings of the International Student’s Scientific Conference. St Petersburg, Russia: [s.n.], 2009.[3]Qin S J. Statistical process monitoring: Basics and beyond [J]. Journal of Chemometrics, 2003, 17(89): 480502.[4]Qin S J. Survey on datadriven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2): 220234.[5]Zhang Y, Zhang Y. Fault detection of nonGaussian processes based on modified independent component analysis [J]. Chemical Engineering Science, 2010, 65(16): 46304639.[6]Ning C, Chen M, Zhou D. Hidden Markov modelbased statistics pattern analysis for multimode process monitoring: An indexswitching scheme[J]. Industrial and Engineering Chemistry Research, 2014, 53(27): 1108411095. [7]葛志强, 宋执环, 杨春节. 基于 MCUSUMICAPCA 的微小故障检测[J]. 浙江大学学报: 工学版, 2008, 42(3): 373377.GE Zhiqiang, SONG Zhihuan, YANG Chunjie. Small shift detection based on MCUSUMICAPCA[J]. Journal o f Zhejiang University: Engineering Science, 2008, 42(3): 373377.[8]Zeng J, Kruger U, Geluk J, et al. Detecting abnormal situations using the KullbackLeibler divergence[J]. Automatica, 2014, 50(11): 27772786.[9]Harmouche J, Delpha C, Diallo D. Incipient fault detection and diagnosis based on KullbackLeibler divergence using principal component analysis: Part I[J]. Signal Processing, 2014, 94: 278287.[10]Harmouche J, Delpha C, Diallo D. Incipient fault detection and diagnosis based on KullbackLeibler divergence using principal component analysis: Part II[J]. Signal Processing, 2015, 109: 334344.[11]葛志强, 杨春节, 宋执环. 基于 MEWMAPCA 的微小故障检测方法研究及其应用[J]. 信息与控制, 2007, 36(5): 650656.GE Zhiqiang, YANG Chunjie, SONG Zhihuan. Research and application of small shifts detection method based on MEWMAPCA[J]. Information and Control, 2007, 36(5): 650656.[12]Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210227.[13]Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 10311044.[14]Ren L, Lü W. Fault detection via sparse representation for semiconductor manufacturing processes [J]. IEEE Transactions on Semiconductor Manufacturing,2014,27(2): 252259. |