上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (05): 644-650.
马超,臧述升,陈小岭,吉雍斌
收稿日期:
2014-09-22
MA Chao,ZANG Shusheng,CHEN Xiaoling,JI Yongbin
Received:
2014-09-22
摘要:
摘要: 在雷诺数处于(6.0~17.7)×103的条件下,利用红外热像仪测量了蒸汽冷却、不同角度V形肋通道换热表面的局部努赛尔数分布,利用计算流体动力学软件对其进行了数值模拟,分析了不同角度V形肋通道内蒸汽的传热特性及压力损失,并与相近工况下的空气冷却结果进行对比.结果表明:采用V形肋通道可以有效提高通道的强化换热特性;随着V形肋角度的减小,冷却性能不断提高,45°的V形肋通道的换热性能最佳;V形肋可使换热通道内部流体形成二次流,通道核心区的低温流体随之补充,使得通道中间靠近换热面的热边界层减薄;在相同雷诺数的条件下,蒸汽冷却的传热性能明显高于空气冷却,但两者的压力损失十分接近.
中图分类号:
马超,臧述升,陈小岭,吉雍斌. V形肋通道内蒸汽冷却的传热及流动特性[J]. 上海交通大学学报(自然版), 2015, 49(05): 644-650.
MA Chao,ZANG Shusheng,CHEN Xiaoling,JI Yongbin. Flow and Heat Transfer Performance of Steam Cooling in V-Shaped Ribbed Channels[J]. Journal of Shanghai Jiaotong University, 2015, 49(05): 644-650.
[1]Liu J Z, Gao J M, Gao T Y. Heat transfer characteristics in steam cooled rectangular channels with two opposite ribroughened walls[J]. Applied Thermal Engineering, 2013, 50(1): 104111.[2]Shui L Q, Gao J M, Shi X J. Effects of duct aspect ratio on heat transfer and friction in steamcooled ducts with 60angled rib turbulators[J]. Experimental Thermal and Fluid Science, 2013, 49: 123134.[3]Shui L Q, Gao J M, Xu L, et al. Numerical investigation of heat transfer and flow characteristics in a steamcooled square ribbed duct[C]∥Proceedings of ASME Turbo Expo. Glasgow, UK: ASME, 2010: 163171.[4]Wang W, Gao J M. Flow and heat transfer characteristics in rotating twopass channels cooled by superheated steam[J]. Chinese Journal of Aeronautics, 2012, 25(4): 524532.[5]Facchini B, Ferrara G, Innocenti L. Blade cooling improvement for heavy duty gas turbine: the air coolant temperature reduction and the introduction of steam and mixed steam/air cooling[J]. International Journal of Thermal Science, 2000, 39(1):7484.[6]Najjar Y S H, Alghamdi A S, AlBeirutty M H. Comparative performance of combined gas turbine systems under three different blade cooling schemes[J]. Applied Thermal Engineering, 2004, 24(13): 19191934.[7]Bohn D, Wolff A, Wolff M, et al. Experimental and numerical investigation of a steamcooled vane[C]∥Proceedings of ASME Turbo Expo. Amsterdam, Netherlands: ASME, GT200230210.[8]Bohn D, Ren J, Kusterer K. Cooling performance of the steamcooled vane in a steam turbine cascade[C]∥Proceeding of ASME Turbo Expo. Reno Tahoe, Nevada, USA: ASME, 2005: 217226.[9]胡宗军,吴铭岚. 采用蒸汽冷却的各种燃气轮机循环性能分析[J]. 上海交通大学学报, 1999, 33(3): 35338.HU Zongjun, WU Minglan. Performance analysis of various gas turbine cycles using steam cooling[J]. Journal of Shanghai Jiaotong University, 1999, 33(3): 335338.
[10]童齐宝, 王锁芳. 叶片内部蒸汽冷却的数值模拟[J]. 航空动力学报, 2008, 23(8): 13641369.TONG Qibao, WANG Suofang. Numerical simulation of a steamcooled vane[J]. Journal of Aerospace Power, 2008, 23(8): 13641369.[11]胡捷,苏生,刘建军, 等. 透平导叶闭式蒸汽冷却方案研究[J]. 工程热物理学报,2008, 29(7): 11211124.HU Jie, SU Sheng, LIU Jianjun, et al. Investigation on cloasedloop steam cooling schemes of a gas turbine guidevane[J]. Journal of Engineering Thermophysics. 2008, 29(7): 11211124.[12]史晓军,税琳棋,高建民,等. 蒸汽冷却带肋矩形通道传热和压降实验关联式[J]. 西安交通大学学报,2013, 47(11):16.SHI Xiaojun, SHUI Linqi, GAO Jianmin, et al. Heat transfer and pressure drop correlations for rectangular channels with ribs[J]. Journal of Xi’an Jiaotong University, 2013, 47(11):16.[13]董瑜,郑洪涛,谭智勇,等. 过热蒸汽射流冷却叶片热耦合数值模拟[J]. 航空动力学报, 2008, 23(2): 237243.DONG Yu, ZHENG Hongtao, TAN Zhiyong, et al. Numerical simulation of jet impingement cooling of turbine steam cooling vane[J]. Journal of Aerospace Power, 2008, 23(2): 237243.[14]Wei P, Jiang P X, Wang Y P, et al. Experimental and numerical investigation of convection heat transfer in channels with different types of ribs[J]. Applied Thermal Engineering, 2011, 31(14): 27022708.[15]Rao Y, Wan C Y, Zang S S. An experimental study of transitional flow friction and heat transfer performance of a channel with staggered arrays of miniscale short pin fins[C]∥Proceedings of ASME Turbo Expo. Orlando, USA: ASEM, 2009: 277285.[16]Kline J L, Mcclintock F A. Describing uncertainties in singlesample experiments[J]. Mechanical Engineering, 1953, 75: 38.[17]Kays W M, Crawford M E. Convective heat and mass transfer, third edition [M]. USA: McGraw Hill College, 1993. |
[1] | 李柯颖, 陈鲲, 江泽鹏, 李超, 郭孝国, 张士杰. 烟气再循环联合循环中燃气轮机温度控制方案[J]. 上海交通大学学报, 2024, 58(8): 1156-1166. |
[2] | 刘爱虢1,朱悦1,陈保东1,曾文1,翁一武2,刘凯1,王成军1. 某重型燃气轮机NOx排放性能反应动力学数值计算[J]. 上海交通大学学报(自然版), 2017, 51(11): 1383-1390. |
[3] | 张磊华a,姚振强a,b,沈洪a,b,成德a,薛亚波a. 环形流道内周向流对摩擦因子的修正公式[J]. 上海交通大学学报(自然版), 2017, 51(1): 46-. |
[4] | 邢建峰1,饶宇1,李博2,饶琨3. 具有微小V肋-凹陷复合结构表面湍流传热实验研究[J]. 上海交通大学学报(自然版), 2017, 51(1): 40-. |
[5] | 杨云,饶宇. 不同深度凹陷内湍流流动与传热性能的数值研究[J]. 上海交通大学学报(自然版), 2017, 51(1): 18-. |
[6] | 黄宜坤,陈梅珊,张会生,翁史烈. 基于Sigma点卡尔曼滤波的燃气轮机气路故障诊断[J]. 上海交通大学学报(自然版), 2016, 50(04): 534-539. |
[7] | 陈金伟,陈梅珊,梅姣姣,张会生. 考虑环境温度和功率的燃气轮机进口可转导叶控制策略优化[J]. 上海交通大学学报(自然版), 2016, 50(04): 540-544. |
[8] | 李恩道, 刘淼儿, 尹全森. FLNG驱动方式及热介质选型技术研究[J]. 海洋工程装备与技术, 2015, 2(4): 225-229. |
[9] | 冯岩,饶宇,李博. 凹陷涡发生器形状对湍流流动与传热性能的影响[J]. 上海交通大学学报(自然版), 2015, 49(05): 614-619. |
[10] | 刘爱虢1,翁一武2,曾文1,陈保东1. 基于燃气轮机的MCFC/MGT混合动力系统特性[J]. 上海交通大学学报(自然版), 2015, 49(04): 418-423. |
[11] | 刘爱虢1,翁一武2,陈雷1,马洪安1. 增压型MCFC/MGT混合动力系统中燃料电池的特性分析[J]. 上海交通大学学报(自然版), 2014, 48(09): 1239-1245. |
[12] | 饶宇,李麟. 具有柱肋阵列与分离式柱肋阵列的冷却通道内流阻与传热实验研究[J]. 上海交通大学学报(自然版), 2014, 48(06): 782-787. |
[13] | 刘爱虢1,翁一武2,曾文1,王冰1. 燃料电池-燃气轮机混合动力系统的燃烧与系统性能分析[J]. 上海交通大学学报(自然版), 2013, 47(12): 1957-1962. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||