上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (8): 1156-1166.doi: 10.16183/j.cnki.jsjtu.2023.126
李柯颖1,2, 陈鲲1, 江泽鹏1, 李超1, 郭孝国1, 张士杰1,2()
收稿日期:
2023-04-11
修回日期:
2023-06-09
接受日期:
2023-06-12
出版日期:
2024-08-28
发布日期:
2024-08-27
通讯作者:
张士杰,研究员,博士生导师;E-mail:作者简介:
李柯颖(1993-),博士生,从事先进燃气轮机循环研究.
基金资助:
LI Keying1,2, CHEN Kun1, JIANG Zepeng1, LI Chao1, GUO Xiaoguo1, ZHANG Shijie1,2()
Received:
2023-04-11
Revised:
2023-06-09
Accepted:
2023-06-12
Online:
2024-08-28
Published:
2024-08-27
摘要:
在部分负荷工况下,采用余热锅炉排气再循环与压气机进口导叶调节联合应用(EGR-IGVC)策略,可有效改善燃气轮机联合循环性能.但此策略若配合联合循环电站部分负荷工况中燃气轮机常采用的等T3(透平入口温度)-T4m(透平排气温度最大允许值)温控方案,在较低负荷下会造成较大的底循环㶲损失,底循环做功能力下降明显.提出了一种更适用于EGR-IGVC策略的等T3-T4m-T4d(透平排气温度设计值)温控方案,以PG9351FA型燃气轮机联合循环为研究对象,采用能量与㶲分析方法,对比研究了EGR-IGVC策略配合两种温控方案时的联合循环部分负荷性能.研究结果表明,当环境温度为15 ℃,部分负荷率在80%负荷以上时,EGR-IGVC策略配合等T3-T4m方案效果仍为最佳;在30%~80%负荷时,与配合等T3-T4m方案相比,EGR-IGVC策略配合等T3-T4m-T4d方案可使燃气轮机效率提高0.15~0.47个百分点,余热锅炉㶲损失减少0.51%(2.15 MW)以上.研究亦表明,当环境温度在0~40 ℃间变化时,采用等T3-T4m-T4d方案总能获得更高的联合循环效率,且随环境温度上升,部分负荷效率增幅更为明显.
中图分类号:
李柯颖, 陈鲲, 江泽鹏, 李超, 郭孝国, 张士杰. 烟气再循环联合循环中燃气轮机温度控制方案[J]. 上海交通大学学报, 2024, 58(8): 1156-1166.
LI Keying, CHEN Kun, JIANG Zepeng, LI Chao, GUO Xiaoguo, ZHANG Shijie. Temperature Control Scheme for Gas Turbine of Combined Cycles with Exhaust Gas Recirculation[J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1156-1166.
表1
设计工况下联合循环系统运行与性能参数
系统 | 参数 | 设计值 |
---|---|---|
环境 | 环境温度/℃ | 15.00 |
环境压力/bar | 1.01 | |
环境相对湿度/% | 60.00 | |
燃气轮机 | 入口空气质量流量/(kg·s-1) | 635.00 |
燃料质量流量/(kg·s-1) | 14.74 | |
透平入口温度/℃ | 1 328.00 | |
燃气轮机排气温度/℃ | 615.00 | |
燃气轮机做功/MW | 253.20 | |
余热锅炉 | 高压蒸汽温度/℃ | 565.00 |
中压蒸汽温度/℃ | 297.00 | |
低压蒸汽温度/℃ | 295.00 | |
高压蒸汽压力/bar | 98.80 | |
中压蒸汽压力/bar | 24.00 | |
低压蒸汽压力/bar | 4.00 | |
蒸汽轮机 | 高压入口压力/bar | 98.80 |
中压入口压力/bar | 24.00 | |
低压入口压力/bar | 4.00 | |
蒸汽轮机做功/MW | 139.80 | |
联合循环 | 联合循环做功/MW | 393.00 |
联合循环效率/% | 56.14 |
表2
3种运行策略的描述
运行策略 | 方案 | 控制参数 | 描述 | 负荷范围/% |
---|---|---|---|---|
IGVC | 等T3-T4m | Δa, qm | 维持透平入口温度为设计工况值 | 82.5~100 |
Δa, qm | 维持透平排气温度为最大值 | 82.5~43.7 | ||
qm | 透平入口与排气温度迅速下降 | 43.7~30 | ||
EGR-IGVC | 等T3-T4m | EGRR, qm | 维持透平入口温度为设计工况值 | 89.1~100 |
EGRR, qm | 维持透平排气温度为最大值 | 81.8~89.1 | ||
Δa, qm | 维持透平排气温度为最大值 | 36.7~81.8 | ||
qm | 透平入口与排气温度迅速下降 | 30~36.7 | ||
等T3-T4m-T4d | EGRR, qm | 维持透平入口温度为设计工况值 | 89.1~100 | |
EGRR, qm | 维持透平排气温度为最大值 | 81.8~89.1 | ||
qm | 透平入口与排气温度逐渐下降 | 75.7~81.8 | ||
Δa, qm | 维持透平排气温度为设计工况值 | 33.0~75.7 | ||
qm | 透平入口与排气温度迅速下降 | 30~33.0 |
表3
顶循环性能参数
项目 | 策略 | 方案 | 压比 | 燃气轮机做功/MW | 燃气轮机效率/% |
---|---|---|---|---|---|
90%负荷 | IGVC | 等T3-T4m | 14.08 | 226.09 | 35.05 |
EGR-IGVC | 等T3-T4m | 13.88 | 223.25 | 35.01 | |
等T3-T4m-T4d | |||||
80%负荷 | IGVC | 等T3-T4m | 12.81 | 193.22 | 33.05 |
EGR-IGVC | 等T3-T4m | 12.75 | 191.77 | 33.45 | |
等T3-T4m-T4d | 12.95 | 192.56 | 33.82 | ||
70%负荷 | IGVC | 等T3-T4m | 11.71 | 163.95 | 31.28 |
EGR-IGVC | 等T3-T4m | 11.54 | 164.55 | 31.88 | |
等T3-T4m-T4d | 12.02 | 166.62 | 32.34 | ||
60%负荷 | IGVC | 等T3-T4m | 10.55 | 135.61 | 29.26 |
EGR-IGVC | 等T3-T4m | 10.39 | 137.04 | 30.00 | |
等T3-T4m-T4d | 10.82 | 138.87 | 30.47 | ||
50%负荷 | IGVC | 等T3-T4m | 9.31 | 107.73 | 26.92 |
EGR-IGVC | 等T3-T4m | 9.13 | 110.36 | 27.94 | |
等T3-T4m-T4d | 9.51 | 111.63 | 28.33 | ||
40%负荷 | IGVC | 等T3-T4m | 8.29 | 82.61 | 24.58 |
EGR-IGVC | 等T3-T4m | 7.75 | 84.36 | 25.53 | |
等T3-T4m-T4d | 8.11 | 85.59 | 25.90 | ||
30%负荷 | IGVC | 等T3-T4m | 7.88 | 61.36 | 22.13 |
EGR-IGVC | 等T3-T4m | 6.96 | 61.37 | 23.08 | |
等T3-T4m-T4d | 6.98 | 62.52 | 23.23 |
[1] | VANDERVORT C. Advancements in H class gas turbines and combined cycle power plants[C]// Turbo Expo: Power for Land, Sea, and Air. Oslo, Norway: ASME Turbo Expo, 2018: 1-10. |
[2] | 戈志华, 马立群, 何洁, 等. 燃气-蒸汽联合循环热电联产机组多种运行方式负荷特性研究[J]. 中国电机工程学报, 2020, 40(8): 2587-2597. |
GE Zhihua, MA Liqun, HE Jie, et al. Study on load characteristics of multiple operation modes of gas-steam combined cycle cogeneration unit[J]. Proceedings of the CSEE, 2020, 40(8): 2587-2597. | |
[3] | 于兰兰. 燃气轮机联合循环部分负荷下性能优化研究[J]. 热力透平, 2016, 45(4): 275-278. |
YU Lanlan. Performance optimization of gas turbine and combined cycle under partial-load[J]. Thermal Turbine, 2016, 45(4): 275-278. | |
[4] | 苏烨, 樊印龙, 尹峰, 等. 联合循环燃气轮机低负荷运行模式探讨与分析[J]. 浙江电力, 2014, 33(12): 35-37. |
SU Ye, FAN Yinlong, YIN Feng, et al. Discussion and analysis on low-load operation mode of combined cycle gas turbines[J]. Zhejiang Electric Power, 2014, 33(12): 35-37. | |
[5] | LIU Z, KARIMI I A. Simulation and optimization of a combined cycle gas turbine power plant for part-load operation[J]. Chemical Engineering Research and Design, 2018, 131: 29-40. |
[6] |
HAO X, SUN L, CHI J, et al. Off-design performance of 9F gas turbine based on gPROMs and BP neural network model[J]. Journal of Thermal Science, 2022, 31(1): 261-272.
doi: 10.1007/s11630-022-1546-4 |
[7] | SAMMAK M, HO C, DAWOOD A, et al. Improving combined cycle part load performance by using exhaust gas recirculation through an ejector[C]// Turbo Expo: Power for Land, Sea, and Air. Virtual, Online: ASME Turbo Expo, 2018: 1-10. |
[8] | JONSHAGEN K. Exhaust gas recirculation to improve part load performance on combined cycle power plants[C]// Turbo Expo: Power for Land, Sea, and Air. Seoul, South Korea: ASME Turbo Expo, 2016: 1-9. |
[9] | LIU Z, KARIMI I A. New operating strategy for a combined cycle gas turbine power plant[J]. Energy Conversion and Management, 2018, 171: 1675-1684. |
[10] | FAN K, YANG C, XIE Z, et al. Load-regulation characteristics of gas turbine combined cycle power system controlled with compressor inlet air heating[J]. Applied Thermal Engineering, 2021, 196: 117285. |
[11] | 陈金伟, 陈梅珊, 梅姣姣, 等. 考虑环境温度和功率的燃气轮机进口可转导叶控制策略优化[J]. 上海交通大学学报, 2016, 50(4): 540-544. |
CHEN Jinwei, CHEN Meishan, MEI Jiaojiao, et al. Optimization of IGV temperature control strategy for gas turbine considering ambient temperature and load[J]. Journal of Shanghai Jiao Tong University, 2016, 50(4): 540-544. | |
[12] | 王振, 段立强. 不同运行策略下燃气轮机联合循环变工况热经济性能分析[J]. 中国电机工程学报, 2021, 41(14): 4912-4922. |
WANG Zhen, DUAN Liqiang. Off-design thermoeconomic performance analysis of gas turbine combined cycle under different operation strategies[J]. Proceedings of the CSEE, 2021, 41(14): 4912-4922. | |
[13] | 杨朝阳. 锅炉主、再热蒸汽超温分析及控制措施[J]. 科技视界, 2013, 21: 148-149. |
YANG Chaoyang. Lord, reheat steam boiler overheating analysis and control measures[J]. Science & Technology Vision, 2013, 21: 148-149. | |
[14] | YANG Y, BAI Z, ZHANG G, et al. Design/off-design performance simulation and discussion for the gas turbine combined cycle with inlet air heating[J]. Energy, 2019, 178: 386-399. |
[15] | 黄超群, 王波, 张士杰, 等. F/G/H级重型燃气轮机联合循环底循环热力性能简明估算模型[J]. 中国电机工程学报, 2019, 39(21): 6320-6328. |
HUANG Chaoqun, WANG Bo, ZHANG Shijie, et al. Concise estimation model of thermodynamic performance for bottom cycle of F/G/H-class heavy duty gas turbine combined cycle[J]. Proceedings of the CSEE, 2019, 39(21): 6320-6328. | |
[16] | 郑炯智, 张国强, 许彦平, 等. 顶底循环参数对燃气-蒸汽联合循环全工况性能影响分析[J]. 中国电机工程学报, 2016, 36(23): 6418-6431. |
ZHENG Jiongzhi, ZHANG Guoqiang, XU Yanping, et al. Analysis of topping and bottoming cycle parameters on the performance of the combined cycle at design/off-design condition[J]. Proceedings of the CSEE, 2016, 36(23): 6418-6431. | |
[17] | SANCHEZ J P, MARTINEZ J E A, CZERWIEC Z M, et al. Theoretical assessment of integration of CCS in the Mexican electrical sector[J]. Energy, 2019, 167: 828-840. |
[18] | JONSHAGEN K, SIPÖCZ N, GENRUP M. A novel approach of retrofitting a combined cycle with post combustion CO2 capture[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(1): 1-7. |
[19] | GE. Gatecycle User’s Guide, Version 5.32.0r[M]. USA: GE Enter Software LLC, 1989. |
[20] | LI K, CHI J, ZHANG S, Energy and exergy analysis of gas turbine combined cycle with exhaust gas recirculation under part-load conditions[J]. Journal of Mechanical Science and Technology, 2023, 37: 2149-2160. |
[21] | CRABOS DJTO. GE power systems gas turbine and combined cycle products[EB/OL]. (2003-02-01) [2023-07-01]. https://courses.washington.edu/mengr430/au07/handouts/ge/product_des.pdf. |
[22] | HACHEM J, SCHUHLER T, ORHON D, et al. Exhaust gas recirculation applied to single-shaft gas turbines: An energy and exergy approach[J]. Energy, 2022, 238: 121656. |
[1] | 刘爱虢1,翁一武2,曾文1,陈保东1. 基于燃气轮机的MCFC/MGT混合动力系统特性[J]. 上海交通大学学报(自然版), 2015, 49(04): 418-423. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||