上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (8): 1148-1155.doi: 10.16183/j.cnki.jsjtu.2023.195
收稿日期:
2023-05-15
修回日期:
2023-06-11
接受日期:
2023-06-12
出版日期:
2024-08-28
发布日期:
2024-08-27
通讯作者:
王继刚,博士,讲师;E-mail: 作者简介:
沈钰锟(2002-),本科生,主要研究燃料液滴的蒸发.
基金资助:
SHEN Yukun1, WANG Jigang1(), QIAO Xinqi2
Received:
2023-05-15
Revised:
2023-06-11
Accepted:
2023-06-12
Online:
2024-08-28
Published:
2024-08-27
摘要:
为研究煤直接和间接液化柴油(DDCL、DICL)及其混合燃料液滴在不同环境温度下(500、600和700 ℃)的蒸发特性,利用基于悬挂法的液滴蒸发试验装置,采用交叉石英丝悬挂液滴,通过燃料设计方法,将DDCL和DICL按29∶21的质量比混合后可获得与柴油理化特性非常相近的燃料.研究显示,DDCL、DICL及其混合燃料液滴蒸发规律与柴油相似,均呈现两阶段蒸发.在600 ℃以下与经典d2定律(d为液滴直径)存在较大偏差,随环境温度的升高,与d2定律的偏差逐渐缩小.在以上3种环境温度下,混合燃料液滴均表现出的蒸发性能优于柴油,分别比柴油的平均蒸发速率高27.2%、46.3%和19.6%.研究结果为煤液化柴油在柴油机上的应用提供支撑数据.
中图分类号:
沈钰焜, 王继刚, 乔信起. 煤直接、间接液化柴油及其混合燃料液滴的蒸发特性[J]. 上海交通大学学报, 2024, 58(8): 1148-1155.
SHEN Yukun, WANG Jigang, QIAO Xinqi. Droplets Evaporation Characteristics of Diesel from Direct and Indirect Coal Liquefaction and Their Blends[J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1148-1155.
[1] | 李海军. 煤直接液化柴油产品特性研究[J]. 神华科技, 2016, 14(2): 74-77. |
LI Haijun. Characteristic research of DDCL product[J]. Shenhua Science and Technology, 2016, 14(2): 74-77. | |
[2] | SHEN S, SUN K, CHE Z, et al. An experimental investigation of the heating behaviors of droplets of emulsified fuels at high temperature[J]. Applied Thermal Engineering, 2019, 161: 114059. |
[3] | OMARA M, DOMINIQUEA T, PATRIZIOB M, et al. Investigation on the conditions leading to the micro-explosion of emulsified fuel droplet using two colors LIF method[J]. Experimental Thermal and Fluid Science, 2020, 116: 110106. |
[4] | HILLENBRAND T, BRÜGGEMANN D. Evaporation of free falling droplets of binary alkane-ethanol blends[J]. Fuel, 2020, 274: 117869. |
[5] | 玄铁民, 孙中成, 李文豪, 等. 甲醇/正辛醇/加氢催化生物柴油单液滴蒸发与微爆特性研究[J]. 西安交通大学学报, 2021, 56(1): 1-10. |
XUAN Tiemin, SUN Zhongcheng, LI Wenhao, et al. Experimental study on evaporation and micro-explosion characteristics of ternary blended droplets of methanol, HCB and n-octanol[J]. Journal of Xi’an Jiaotong University, 2021, 56(1): 1-10. | |
[6] | QIAN Y, ZHAO P, TAO C, et al. Experimental study on evaporation characteristics of lubricating oil/gasoline blended droplet[J]. Experimental Thermal and Fluid Science, 2019, 103: 99-107. |
[7] | ZHANG H, LU Z, WANG T, et al. Mist formation during micro-explosion of emulsion droplets[J]. Fuel, 2023, 339: 127350. |
[8] | CHEN X, XI X, XIAO G, et al. Effect of ambient temperature and water content on emulsified heavy fuel oil droplets evaporation: Evaporation enhancement by droplet puffing and micro-explosion[J]. Fuel, 2023, 334: 126614. |
[9] | WANG Z, YUAN B, HUANG Y, et al. Progress in experimental investigations on evaporation characteristics of a fuel droplet[J]. Fuel Processing Technology, 2022, 231: 107243. |
[10] | HAN K, LIN Q, LIU M, et al. Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets[J]. Renewable Energy, 2022, 196: 261-277. |
[11] | MARTI F, MARTINEZ O, MAZO D, et al. Evaporation of a droplet larger than the Kolmogorov length scale immersed in a rlative mean flow[J]. International Journal of Multiphase Flow, 2017, 88: 63-68. |
[12] | LAW C K. Recent advances in droplet vaporization and combustion[J]. Progress in Energy and Combustion Science, 1982, 8: 171-201. |
[13] | NOMURA H, MURAKOSHI T, SUGANUMA Y, et al. Microgravity experiments of fuel droplet evaporation in sub and supercritical environments[J]. Proceedings of the Combustion Institute, 2017, 36: 2425-2432. |
[14] | DAIF A, BOUAZIZ M, CHESNEAU X, et al. Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model[J]. Experimental Thermal and Fluid Science, 1999, 18: 282-290. |
[15] | KIM H, WON J, BAEK S W. Evaporation of a single emulsion fuel droplet in elevated temperature and pressure conditions[J]. Fuel, 2018, 226: 172-180. |
[16] | BIROUK M, FABBRO S C. Droplet evaporation in a turbulent atmosphere at elevated pressure—Experimental data[J]. Proceedings of the Combustion Institute, 2013, 34: 1577-1584. |
[17] | VERWEY C, BIROUK M. Experimental investigation of the effect of droplet size on the vaporization process in ambient turbulence[J]. Combustion and Flame, 2017, 182: 288-297. |
[18] | 金志伟. 煤液化柴油的材料相容性、喷射与喷雾研究[D]. 上海: 上海交通大学, 2019. |
JIN Zhiwei. Study on material compatibility, injection and spray of coal-liquefied diesel[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
[19] | 梅莲, 王忠, 刘帅, 等. 煤液化柴油掺混甲醇柴油机试验研究[J]. 煤炭转化, 2018, 41(5): 38-51. |
MEI Lian, WANG Zhong, LIU Shuai, et al. Study on engine fueled with mixture of coal liquefied diesel and methanol[J]. Coal Conversion, 2018, 41(5): 38-51. | |
[20] | 胡云剑, 金环年, 李克健, 等. 煤直接液化柴油的性质及发动机燃烧和排放[J]. 石油学报, 2010, 26(Sup.1): 246-252. |
HU Yunjian, JIN Huannian, LI Kejian, et al. Properties, engine combustion and emission of diesel from direct coal liquefraction[J]. Acta Petroleisinica, 2010, 26(Sup.1): 246-252. | |
[21] | 代玉利, 裴毅强, 秦静, 等. 煤制油的喷雾燃烧及排放性能试验研究[J]. 内燃机工程, 2015, 36(3): 26-32. |
DAI Yuli, PEI Yiqiang, QIN Jing, et al. Experimental study on spray combustion and emission characteristics of coal-to-liquids[J]. Chinese Internal Combustion Engine and Engineering, 2015, 36(3): 26-32. | |
[22] | FANG X, HUANG Z, QIAO X, et al. Skeletal mechanism development for a 3-component jet fuel surrogate using semi-global sub-mechanism construction and mechanism reduction[J]. Fuel, 2018, 229: 53-59. |
[23] | WANG J, HUANG X, QIAO X, et al. Experimental study on effect of support fiber on fuel droplet vaporization at high temperatures[J]. Fuel, 2020, 268: 117407. |
[24] | MANJUNATH M, RAGHAVAN V, MEHTA P S. Evaporation characteristics of suspended droplets of biodiesel fuels of Indian origin and their diesel blends-An experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 28-41. |
[25] | WANG J, WANG X, CHEN H, et al. Experimental study on puffing and evaporation characteristics of jatropha straight vegetable oil (SVO) droplets[J]. International Journal of Heat and Mass Transfer, 2018, 119: 392-399. |
[26] | WANG J, QIAO X, JU D, et al. Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations[J]. Energy, 2019: 183: 149-159. |
[27] | WANG J, ZHANG Q, LIANG K, et al. Micro-explosion enhanced combustion of Jatropha oil/2, 5-dimethylfuran (DMF) blended fuel droplets[J]. Fuel, 2023, 331: 128507. |
[28] | HASHIMOTO N, NOMURA H, SUZUKI M, et al. Evaporation characteristics of a palm methyl ester droplet at high ambient temperatures[J]. Fuel, 2015, 143: 202-210. |
[29] | LIU Y C, SAVAS A J, AVEDISIAN C T. Spherically symmetric droplet combustion of three and four component miscible mixtures as surrogates for jet[J]. Proceedings of the Combustion Institute, 2013, 34: 1569-1576. |
[30] | CHAUVEAU C, BIROUK M, HALTER F, et al. An analysis of the droplet support fiber effect on the evaporation process[J]. International Journal of Heat and Mass Transfer, 2019, 128: 885-891. |
[31] | GHASSEMI H, BAEK S W, KHAN Q S. Experimental study on binary droplet evaporation at elevated pressures and temperatures[J]. Combustion Science and Technology, 2006, 178: 1031-1053. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||