上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (12): 1766-1771.
张马骏a,陈鑫a,b
收稿日期:
2014-03-21
基金资助:
国家自然科学基金资助项目(11372185;11102110),上海市重点学科项目(B206)
ZHANG Majuna,CHEN Xina,b
Received:
2014-03-21
摘要:
摘要: 采用数值模拟的手段,耦合流体体积(VOF)多相流模型和自然空泡模型,通过改变单个蒸汽气泡距竖直固壁和水面的距离,计算了这2类边壁共同作用下的溃灭过程.在溃灭的前期,气泡外形主要受水面边壁影响,呈远离水面向内凹陷的趋势;在溃灭的后期,固壁的影响凸显,凹陷的方向逐渐指向固壁.当气泡离固壁越近,溃灭时间越长;当气泡离水面越近时,溃灭时间越短.对固壁上的压力峰值,气泡距竖直固壁的距离起决定作用.
中图分类号:
张马骏a,陈鑫a,b. 单个蒸汽气泡溃灭过程的边壁效应数值研究[J]. 上海交通大学学报(自然版), 2014, 48(12): 1766-1771.
ZHANG Majuna,CHEN Xina,b. Numerical Study of Boundary Effect During the Collapse of Single Vapor Bubble[J]. Journal of Shanghai Jiaotong University, 2014, 48(12): 1766-1771.
[1]Hattori S, Hirose T, Sugiyama K. Prediction method for cavitation erosion based on measurement of bubble collapse impact loads[J]. Wear, 2010, 269(78): 507514.[2]AbouelKasem A, ElDeen A E, Emara K M, et al. Investigation into cavitation erosion pits[J]. Journal of Tribology, 2009, 131(3): 031605.[3]Vedadi M, Choubey A, Nomura K, et al. Structure and dynamics of shockinduced nanobubble collapse in water[J]. Physical Review Letters, 2010, 105(1): 014503.[4]Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 9498.[5]Brennen C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 2013.[6]Lauterborn W, Kurz T. Physics of bubble oscillations[J]. Reports on Progress in Physics, 2010, 73(10): 106501. [7]Soliman W, Nakano T, Takada N, et al. Modification of RayleighPlesset theory for reproducing dynamics of cavitation bubbles in liquidphase laser ablation[J]. Japanese Journal of Applied Physics, 2010, 49(11R): 116202.[8]Klotz A R, Hynynen K. Simulations of the Devin and Zudin modified RayleighPlesset equations to model bubble dynamics in a tube[J]. Technical Acoustics/Tekhnicheskaya Akustika, 2010, 11(1): 115.[9]Plesset M S, Chapman R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971, 47(2): 283290.[10]Brujan E A, Ikeda T, Yoshinaka K, et al. The final stage of the collapse of a cloud of bubbles close to a rigid boundary[J]. Ultrasonics Sonochemistry, 2011, 18(1): 5964.[11]Xu W L, Bai L X, Zhang F X. Interaction of a cavitation bubble and an air bubble with a rigid boundary[J]. Journal of Hydrodynamics, 2010, 22(4): 503512.[12]Lind S J, Phillips T N. The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary[J]. Theoretical and Computational Fluid Dynamics, 2012, 26(14): 245277.[13]Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface[J]. Journal of Fluid Mechanics, 1981, 111: 123140.[14]Li Jian, Rong Jili. Bubble and free surface dynamics in shallow underwater explosion[J]. Ocean Engineering, 2011, 38(17): 18611868.[15]Park I R, Kim K S, Kim J, et al. A volumeoffluid method for incompressible free surface flows[J]. International Journal for Numerical Methods in Fluids, 2009, 61(12): 13311362.[16]Zwart P J, Gerber A G, Belamri T. A twophase flow model for predicting cavitation dynamics[C] //Fifth International Conference on Multiphase Flow. Yokohama, Japan: [s.n.], 2004: 111. |
[1] | 牟介刚, 章子成, 谷云庆, 施郑赞, 郑水华. 圆形非光滑表面叶片对离心泵空化特性的影响[J]. 上海交通大学学报, 2020, 54(6): 577-583. |
[2] | 谢行,任慧龙,陶凯东,冯亿坤. 应用改进流体体积法的楔形体斜向入水研究[J]. 上海交通大学学报, 2020, 54(1): 20-27. |
[3] | 杨笑,彭旭东,孟祥铠,王玉明. 端面倾斜对粗糙表面机械密封性能的影响[J]. 上海交通大学学报(自然版), 2017, 51(6): 748-755. |
[4] | 叶金铭,王威,于安斌,张凯奇. 抗空化扭曲舵的设计及其水动力性能分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 314-. |
[5] | 李懿霖,宋保维. 空化器直径对超空泡航行器空泡性能的影响[J]. 上海交通大学学报(自然版), 2017, 51(12): 1488-1492. |
[6] | 赵伟国1,2,韩向东1,2,盛建萍3,潘绪伟1,2. 沙粒粒径与含量对喷嘴空化的影响[J]. 上海交通大学学报(自然版), 2017, 51(11): 1399-1404. |
[7] | 栗夫园,党建军,张宇文. 锥形空化器的流体动力特性及其影响因素[J]. 上海交通大学学报(自然版), 2016, 50(02): 246-250. |
[8] | 鹿麟,潘光. 泵喷推进器非定常空化性能数值模拟分析[J]. 上海交通大学学报(自然版), 2015, 49(02): 262-268. |
[9] | 王宁,魏正英,林起崟,陈渭. 时变条件下滑动轴承系统的多物理场耦合分析[J]. 上海交通大学学报(自然版), 2014, 48(1): 6-11. |
[10] | 施瑶,潘光,王鹏,杜晓旭. 泵喷推进器空化特性数值分析[J]. 上海交通大学学报(自然版), 2014, 48(08): 1059-1064. |
[11] | 江华生1,2,彭旭东1,孟祥铠1,沈明学1. 旋转轴唇形密封泵吸率的有限元数值分析[J]. 上海交通大学学报(自然版), 2014, 48(08): 1194-1199. |
[12] | 张永涛1,傅慧萍2,杨炎华1. 波流及自由面对跨海桥隧预制结构水动力性能影响的数值分析[J]. 上海交通大学学报(自然版), 2013, 47(10): 1525-1531. |
[13] | 邬伟1,2,熊鹰1. 一种抗空化翼型修形设计方法[J]. 上海交通大学学报(自然版), 2013, 47(06): 878-883. |
[14] | 杨琼方a, 王永生a, 张志宏b. 螺旋桨初生空化湍流的多相流数值模拟 [J]. 上海交通大学学报(自然版), 2012, 46(08): 1251-1262. |
[15] | 苏永生, 王永生, 段向阳. 实船喷水推进泵空化识别试验[J]. 上海交通大学学报(自然版), 2012, 46(03): 404-409. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||