[1]牟介刚, 陈莹, 谷云庆, 等. 不同空化程度下离心泵流固耦合特性研究[J]. 振动与冲击, 2016, 35(23): 203-208.
MOU Jiegang, CHEN Ying, GU Yunqing, et al. Fluid-solid interaction characteristics of a centrifugal pump under different cavitation levels[J]. Journal of Vibration and Shock, 2016, 35(23): 203-208.
[2]蒋爱华, 章艺, 靳思宇, 等. 离心泵流体激励力的研究: 蜗壳部分[J]. 振动与冲击, 2012, 31(4): 60-66.
JIANG Aihua, ZHANG Yi, JIN Siyu, et al. Fluid exciting forces on centrifugual pump part Ⅰ: Force on volute[J]. Journal of Vibration and Shock, 2012, 31(4): 60-66.
[3]MAHSA E B, ALIREZA R, MEHDI A. The influence of SiO2 nanoparticles on cavitation initiation and intensity in a centrifugal water pump[J]. Experimental Thermal and Fluid Science, 2014, 55: 71-76.
[4]ZHANG Y N, QIAN Z D, JI B, et al. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 303-318.
[5]赵伟国, 赵国寿, 咸丽霞, 等. 离心泵叶片表面布置障碍物抑制空化的数值模拟与实验[J]. 农业机械学报, 2017, 48(9): 111-120.
ZHAO Weiguo, ZHAO Guoshou, XIAN Lixia, et al. Effect of surface-fitted obstacle in centrifugal pump on cavitation suppression[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 111-120.
[6]牟介刚, 代东顺, 谷云庆, 等. 仿生蜗壳结构对离心泵隔舌区域脉动特性的影响[J]. 上海交通大学学报, 2016, 50(9): 1493-1499.
MOU Jiegang, DAI Dongshun, GU Yunqing, et al. Effect of structure of bionic volute on pulsation cha-racteristic near volute tongue in centrifugal pump[J]. Journal of Shanghai Jiao Tong University, 2016, 50(9): 1493-1499.
[7]牟介刚, 刘剑, 谷云庆, 等. 仿生蜗壳离心泵内部非定常流动特性分析[J]. 浙江大学学报(工学版), 2016, 50(5): 927-933.
MOU Jiegang, LIU Jian, GU Yunqing, et al. Analysis of unsteady flow characteristics in centrifugal pump with bionic volute[J]. Journal of Zhejiang University (Engineering edition), 2016, 50(5): 927-933.
[8]NIU S C, LI B, MU Z Z, et al. Excellent structure-based multifunction of morpho butterfly wings: A review[J]. Journal of Bionic Engineering, 2015, 12(2): 170-189.
[9]SHI W D, WANG C, WANG W, et al. Numerical calculation on cavitation pressure pulsation in centri-fugal pump[J]. Advances in Mechanical Engineering, 2014, 6(1): 1-8.
[10]STOPA M M, CARDOSO B J, MARTINEZ C B, et al. Incipient detection of cavitation phenomenon in centrifugal pumps[J]. IEEE Transactions on Industry Applications, 2014, 50(1): 120-126.
[11]LIU H L, LIU D X; WANG Y, et al. Experimental investigation and numerical analysis of unsteady attached sheet-cavitating flows in a centrifugal pump[J]. Journal of Hydrodynamics, 2013, 25(3): 370-378.
[12]TAN L, ZHU B S, CAO S L, et al. Numerical simulation of unsteady cavitation flow in a centrifugal pump at off-design conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(11): 1994-2006.
[13]TAN L, ZHU B S, CAO S L, et al. Influence of prewhirl regulation by inlet guide vanes on cavitation performance of a centrifugal pump[J]. Energies, 2014, 7(2): 1050-1065.
[14]LEE K H, KANG S H, CHOI J W. Cavitation performance and instability of a two-bladed inducer[J]. Journal of Propulsion and Power, 2012, 28(6): 1168-1175.
[15]谷云庆, 牟介刚, 代东顺, 等. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究[J]. 物理学报, 2015, 64(2): 310-319.
GU Yunqing, MOU Jiegang, DAI Dongshun, et al. Characteristics on drag reduction of bionic jet surface based on earthworm’s back orifice jet[J]. Acta Physica Sinica, 2015, 64(2): 310-319.
[16]SINGHAL A K, ATHAVALE MM, LI H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624. |